Tutorial 01: First Steps Using the VLFL-Toolbox for Solid Object Design

2014-11-17: Tim C. Lueth, MIMED - Technische Universität München, Germany (URL: http://www.sg-lib.org) - Last Change: 2019-06-11

Contents

- Complete List of all Tutorials with Publishable MATLAB Files of this Solid-Geoemtries Toolbox
- Motivation for this tutorial: (Originally SolidGeometry 1.1 required)
- 1. Creating and visualizing a simple base-contour by four 2D-points
- 2. Append a 3rd coordinate column to get a vertex list
- 3. Predefined functions for the generation of often used planar polygons (PL)
- 4. More predefined functions for planar polygons in 3D (VL)
- 5. Calculation of the surface of a convex polygon
- 6. Calculation of all surfaces of convex polygon-based 2.5D-solid-volumes
- 7. Graphical user interface for STL import, export, and viewing

Complete List of all Tutorials with Publishable MATLAB Files of this Solid-Geoemtries Toolbox

The following topics are covered an explained in the specific tutorials:

- Tutorial 01: First Steps Using the VLFL-Toolbox for Solid Object Design
- Tutorial 02: Using the VLFL-Toolbox for STL-File Export and Import
- Tutorial 03: Closed 2D Contours and Boolean Operations in 2D
- Tutorial 04: 2½D Design Using Boolean Operators on Closed Polygon Lists (CPL)
- Tutorial 05: Creation, Relative Positioning and Merging of Solid Geometries (SG)
- Tutorial 06: Relative Positioning and Alignment of Solid Geometries (SG)
- Tutorial 07: Rotation of Closed Polygon Lists for Solid Geometry Design
- Tutorial 08: Slicing, Closing, Cutting and Separation of Solid Geometries
- Tutorial 09: Boolean Operations with Solid Geometries
- Tutorial 10: Packaging of Sets of Solid Geometries (SG)
- Tutorial 11: Attaching Coordinates Frames to Create Kinematik Models
- Tutorial 12: Define Robot Kinematics and Detect Collisions
- Tutorial 13: Mounting Faces and Conversion of Blocks into Leightweight-structures
- Tutorial 14: Manipulation Functions for Closed Polygons and Laser Cutting (SVG)
- Tutorial 15: Create a Solid by 2 Closed Polygons
- Tutorial 16: Create Tube-Style Solids by Succeeding Polygons
- Tutorial 17: Filling and Bending of Polygons and Solids
- Tutorial 18: Analyzing and modifying STL files from CSG modeler (Catia)
- Tutorial 19: Creating drawing templates and dimensioning from polygon lines
- Tutorial 20: Programmatically Interface to SimMechanics Multi-Body Toolbox
- Tutorial 21: Programmatically Convert Joints into Drives (SimMechanics)
- Tutorial 22: Adding Simulink Signals to Record Frame Movements
- Tutorial 23: Automatic Creation of a Missing Link and 3D Print of a Complete Model
- Tutorial 24: Automatic Creation of a Joint Limitations
- Tutorial 25: Automatic Creation of Video Titels, Endtitels and Textpages
- Tutorial 26: Create Mechanisms using Universal Planar Links
- Tutorial 27: Fourbar-Linkage: 2 Pose Syntheses and Linkage Export for 3D Printing

- Tutorial 28: Fourbar-Linkage: 3 Pose Syntheses and Linkage Export for 3D Printing
- Tutorial 29: Create a multi body simulation using several mass points
- Tutorial 30: Creating graphical drawings using point, lines, surfaces, frames etc.
- Tutorial 31: Importing 3D Medical DICOM Image Data and converting into 3D Solids
- Tutorial 32: Exchanging Data with a FileMaker Database
- Tutorial 33: Using a Round-Robin realtime multi-tasking system
- Tutorial 34: 2D Projection Images and Camera Coordinate System Reconstruction
- Tutorial 35: Creation of Kinematic Chains and Robot Structures
- Tutorial 36: Creating a Patient-Individual Arm-Skin Protector-Shell
- Tutorial 37: Dimensioning of STL Files and Surface Data
- Tutorial 38: Some more solid geometry modelling function
- Tutorial 39: HEBO Modules robot design
- Tutorial 40: JACO Robot Simulation and Control
- Tutorial 41: Inserting Blades, Cuts and Joints into Solid Geometries
- Tutorial 42: Performing FEM Stress and Displacement Analysis and Structural Optimization of Solids
- Tutorial 43: Performing FEM Structural Optimization (CAO) and Topological Optimization (SKO) of Solids
- Tutorial 44: Creation of solids and kinematics from 3D curves and transformation matrices
- Tutorial 45: Creation of Solids using the SG-Coder SGofCPLcommand
- Tutorial 46: Creating Fischertechnik compatible gear boxes using SGofCPLcommand
- Tutorial 47: Creating four-joints by 3 pose synthesis

Motivation for this tutorial: (Originally SolidGeometry 1.1 required)

1. Creating and visualizing a simple base-contour by four 2D-points

A point list is a nx2 array. The number n is the number of 2D coordinate points [x y]. In general, such a point list can be the basis for designing a boundary surface model. We start with some simple functions to display polygons:

■ PLplot to plot in 3D a nx2 point list (PL).

```
PL=[ 0 0; 1 0; 1 1; 0 1]
PLplot(PL);
```

```
PL = 0 0 1 0 1 1 0 1 1
```


2. Append a 3rd coordinate column to get a vertex list

A vertex list is a nx3 array. The number n is the number of 3D coordinate points [x y z]. In fact, the point list can be transferred into a vertex list by appending a third column containing the z-coordinate such as zero or another z-coordinate.

- VLaddz for converting a point list (PL) into a vertex list (VL) by adding a 3rd column for the z-coordinate.
- VLplot for displaying in 3D a nx3 vertex list (VL).

```
VL=VLaddz(PL,1)
VLplot (VL,'bx-',2);
```


3. Predefined functions for the generation of often used planar polygons (PL)

For some often used contours, there are predefined functions that generate a nx2 coordinate point list (PL).

- PLcircle for a polygon with n points.
- PLcircseg for a circle segment with n points.
- PLevolvente for an evolvente as contour.

4. More predefined functions for planar polygons in 3D (VL)

Some functions for planar polygons create already 3D points (vertices) and the result of such a function is a vertex list (VL).

- VLpolygon to generate elliptic contours.
- VLBezier4P to generate a Bezier-curve using 4 points.
- VLBezierC to generate a Bezier-curve using as many points as possible.
- VLremstraightCVL to remove obsolete points on straight lines.

```
close all;
VL=VLpolygon(20,3,1,[5 3 0]);
VLplot (VL,'g*-'); show, axis equal, view (0,90); grid on; hold on;
VL=VLBezier4P([0 0 0],[4 0 0],[6 1 0],[10 1 0],20);
VLplot (VL,'r*-'); show, axis equal, view (0,90);
VL=VLBezierC([0 5; 4 5; 6 7; 10 7],40);
VLplot (VL,'b*-'); show, axis equal, view (0,90); grid on
```


■ VLBeziernoose to generate a Bezier-curve spring-element.

```
close all;
VL=VLBeziernoose(10,2,3,3,30);
VLplot (VL,'b*-'); show, axis equal, view (0,90); grid on
```


• VLui as an user interface to enter points by mouse clicks.

```
close all;
VL=VLui
VLplot (VL,'b*-'); show, axis equal, view (0,90); grid on
```

```
VL =

0.1141     0.3316     0

0.2690     0.6010     0

0.8012     0.6255     0

0.8593     0.2276     0
```


• VLRadius4P for inserting points to generate radial curves instead of corners.

```
close all
VL=VLRadius4P([0 0 0],[10 0 0], [10 10 0], [0 10 0], pi/6, 2);
VL=VLremstraightCVL (VL);
VLplot (VL,'b*-',2); show, axis equal, view (0,90); grid on
```


• VLRadiusC for inserting points to generate radial curves instead of corners.

```
close all
VLORG=[[0 0 0];[10 0 0];[10 10 0];[0 1 0]];
VLplot (VLORG, 'r*-',2); show, axis equal, view (0,90); grid on; hold on
VL=VLRadiusC(VLORG, pi/6, 2);
VL=VLremstraightCVL (VL);
VLplot (VL, 'b*-',1); show, axis equal, view (0,90); grid on
```


5. Calculation of the surface of a convex polygon

If we have a closed convex polygon, it is possible to generate a surface desciption by a facet list (FL) describing triangle facets. This is called tesselation of the closed polygon/surface. For closed convex polygons, the simplest form are facets from the 1st to the 2nd and 3rd points [1 2 3], then from the 1st to the 3rd and 4th [1 3 4], and so on. The facet list (FL) is therefor a nx3 index list to the point list or vertex list (VL). To use this concept we have some basic functions. For non convex functions we see later some more solutions.

- FLofVL to generate the facet list (FL) for a convex polygon.
- VLFLplot to plot a surface given by a vertex list (VL) and a facet list (FL).

```
close all
FL=FLofVL(VL)
% FL=FLofCVL(VL)
VLFLplot (VL,FL,'g'); axis equal; view (0,90); grid on
% view (-30,30);
```

```
FL =

1 2 3
1 3 4
1 4 5
1 5 6
1 6 7
1 7 8
1 8 9
```


6. Calculation of all surfaces of convex polygon-based 2.5D-solid-volumes

- VLFLofPLz to extrude a convex polygon to a solid volume.
- VLFLplotlight to adjust the rendering parameter of the current graphic.

```
close all
[VL,FL]=VLFLofPLz (VL(:,1:2),5);
VLFLplot (VL,FL); axis equal; view (-30,30); grid on
VLFLplotlight(1,0.9); show;
```


7. Graphical user interface for STL import, export, and viewing

Currently tested only for OSX (Apple Macintosh), there is also a graphical user interface available for displaying the surface objects, to import STL-Files and to export STL-Files. In this example, the tool is just introduced, to explain the capabilities to implement also graphical design tools for solid object modeling.

• VLFLviewer to show surface models, to import and to export STL-Files.

VLFLviewer (VL,FL,'b'); view (-30,30);

VLFLlicense

- % * Tim Lueth, tested and compiled on OSX 10.7.5 with Matlab 2014b on 2014-11-18
- % * Tim Lueth, executed and published on 64 Bit PC using Windows with Matlab 2014b on 2014-11-18

```
This VLFL-Lib, Rel. (2023-Oct-03), is for limited non commercial educational use only!
Licensee: Tim Lueth (Development Version)!
Please contact Tim Lueth, Professor at TU Munich, Germany!
WARNING: This VLFL-Lib (Rel. ) license will exceed at 06-Jul-2078 07:32:58!
Executed 03-Oct-2023 07:33:00 by 'timlueth' on a MACI64 using Mac OSX 13.6 | R2023a Update 5 | SG-Lib 5.4
------ Used Matlab products: ------
{\tt database\_toolbox}
distrib_computing_toolbox
fixed_point_toolbox
image_toolbox
map_toolbox
matlab
optimization_toolbox
pde_toolbox
phased_array_system_toolbox
signal_blocks
signal toolbox
simmechanics
simscape
simulink
statistics_toolbox
```

Published with MATLAB® R2023a