Tutorial 23: Automatic Creation of a Missing Link and 3D Print of a Complete Model

2016-12-19: Tim C. Lueth, MIMED - Technische Universität München, Germany (URL: http://www.mimed.de) - Last Change: 2017-07-07

Contents

- Complete List of all Tutorials with Publishable MATLAB Files of this Solid-Geoemtries Toolbox
- Motivation for this tutorial: (Originally SolidGeometry 3.1 required)
- 2. Open a system and create several fixed nodes and attach revolute joints
- 3. Create a cylindric joint from two solids an attach it to revolute joint
- 4. Attach two frame sensor to record the movement of the falling cylinder
- 5. Show the Simulation
- 6. Now create a solid between the revolute joint and cylindric joint
- 7. Now connect the new solid in the model
- 8. Show the Simulation: The Mechnism has no Movement anymore
- 9. Now Create a Solid Model of Movement Status at Time = 0.1 Seconds
- Final Remarks

Complete List of all Tutorials with Publishable MATLAB Files of this Solid-Geoemtries Toolbox

The following topics are covered an explained in the specific tutorials:

- Tutorial 01: First Steps Using the VLFL-Toolbox for Solid Object Design
- Tutorial 02: Using the VLFL-Toolbox for STL-File Export and Import
- Tutorial 03: Closed 2D Contours and Boolean Operations in 2D
- Tutorial 04: 21/2D Design Using Boolean Operators on Closed Polygon Lists (CPL)
- Tutorial 05: Creation, Relative Positioning and Merging of Solid Geometries (SG)
- Tutorial 06: Relative Positioning and Alignment of Solid Geometries (SG)
- Tutorial 07: Rotation of Closed Polygon Lists for Solid Geometry Design
- Tutorial 08: Slicing, Closing, Cutting and Separation of Solid Geometries
- Tutorial 09: Boolean Operations with Solid Geometries
- Tutorial 10: Packaging of Sets of Solid Geometries (SG)
- Tutorial 11: Attaching Coordinates Frames to Create Kinematik Models
- Tutorial 12: Define Robot Kinematics and Detect Collisions
- Tutorial 13: Mounting Faces and Conversion of Blocks into Leightweight-structures
- Tutorial 14: Manipulation Functions for Closed Polygons and Laser Cutting (SVG)
- Tutorial 15: Create a Solid by 2 Closed Polygons
- Tutorial 16: Create Tube-Style Solids by Succeeding Polygons
- Tutorial 17: Filling and Bending of Polygons and Solids
- Tutorial 18: Analyzing and modifying STL files from CSG modeler (Catia)
- Tutorial 19: Creating drawing templates and dimensioning from polygon lines
- Tutorial 20: Programmatically Interface to SimMechanics Multi-Body Toolbox
- Tutorial 21: Programmatically Convert Joints into Drives (SimMechanics)
- Tutorial 22: Adding Simulink Signals to Record Frame Movements
- Tutorial 23: Automatic Creation of a Missing Link and 3D Print of a Complete Model
- Tutorial 24: Automatic Creation of a Joint Limitations
- Tutorial 25: Automatic Creation of Video Titels, Endtitels and Textpages
- Tutorial 26: Create Mechanisms using Universal Planar Links
- Tutorial 27: Fourbar-Linkage: 2 Pose Syntheses and Linkage Export for 3D Printing
- Tutorial 28: Fourbar-Linkage: 3 Pose Syntheses and Linkage Export for 3D Printing
- Tutorial 29: Create a multi body simulation using several mass points
- Tutorial 30: Creating graphical drawings using point, lines, surfaces, frames etc.
- Tutorial 31: Importing 3D Medical DICOM Image Data and converting into 3D Solids
- Tutorial 32: Exchanging Data with a FileMaker Database
- Tutorial 33: Using a Round-Robin realtime multi-tasking system
- Tutorial 34: 2D Projection Images and Camera Coordinate System Reconstruction
- Tutorial 35: Collection of Ideas for Tutorials
- Tutorial 36: Creating a Patient-Individual Arm-Skin Protector-Shell

Motivation for this tutorial: (Originally SolidGeometry 3.1 required)

2. Open a system and create several fixed nodes and attach revolute joints

function VLFL_EXP23

smbNewSystem ('SG_LIB_EXP_23');

smbCreateSGNode ([80 20 5],'N2');

Creating temporary directory '/Users/timlueth/Desktop/tmp_SG_LIB_EXP_23/'

ans	=		
	1	0	0
	0	0	1
	0	-1	0
ans	=		
	1	0	0
	0	0	1
	0	-1	0

3. Create a cylindric joint from two solids an attach it to revolute joint

```
Ro=5;
Ri=3;
slot=0.3;
Cl=SGofCPLz([PLcircle(Ro);NaN NaN;PLcircle(Ri+slot)],30);
% Cl=SGTset(Cl,'B',TofSG(Cl,'bottom','roty',pi));
Cl=SGTset(Cl,'B',TofSG(Cl,'bottom','right',-1,'roty',pi/2,'5.1'));
Cl=SGTset(Cl,'r','Rl_M');
Dl=SGfCPLz(PLcircle(3),30);
Dl=SGfCPLz(PLcircle(3),30);
Dl=SGTset(Dl,'B',TofSG(Dl,'incenter'));
Dl=SGTset(Dl,'F',TofSG(Dl,'top'));
```

ans = 1 0 0 0 -1 ans = 1 0 0 0 0 -1

0

1

0

0

1

0

4. Attach two frame sensor to record the movement of the falling cylinder

5. Show the Simulation

```
simOut=smbSimulate(0.1);
smbVideoSimulation(1);
```

. . .

6. Now create a solid between the revolute joint and cylindric joint

```
[T,ta]=smbTofSimOut(simOut,'R2_M.F'); T1=squeeze(T(:,:,1));
[T,tb]=smbTofSimOut(simOut,'D1.F'); T2=squeeze(T(:,:,1));
SG=SGof2T(T1,T2*TofR(rot(0,pi,0)),'',4); % Radius 4
SGTplot(SG);
```


7. Now connect the new solid in the model

```
smbCreateSG(SG, 'SG', 'm');
smbCreateConnection('R2_M', 'SG.B');
% smbCreateConnection('D1.F', 'SG.F', 'align'); % removed because of a bug atarting 2023a which was still simulation correctly without movement in 2022
smbDrawNow;
```


8. Show the Simulation: The Mechnism has no Movement anymore

smbVideoSimulation(0.1);

.

9. Now Create a Solid Model of Movement Status at Time = 0.1 Seconds

SG=smbFullModelSimulation(0.1); SGfigure; SGplot(SG); view (7,20);			
CREATING A FULL SOLID-MOVEMENT SIMULATION-MODEL 'SG_LIB_EXP_23' THAT RUNS At LEAST 0.10 SECONDS			
Adding frame sensors for all solids of the model			
Add frame sensors for 'C1.SG'			
Add frame sensors for 'D1.SG'			
Add frame sensors for 'N2.SG'			
Add frame sensors for 'N4.SG'			
Add frame sensors for 'R1.FIX1.SG'			
Add frame sensors for 'R1_M.SG'			
Add frame sensors for 'R1_S.SG'			
Add frame sensors for 'R2.FIX1.SG'			
Add frame sensors for 'R2_M.SG'			
Add frame sensors for 'R2_S.SG'			
Add frame sensors for 'SG.SG'			
SimulationOutput.			
Simularitation and a live sime and locating Nodel			
Sout: [1x] Simulak.SimulationData.Dataset]			
tout: [81x1 double]			
xout: [1x1 SimulationData.Dataset]			
SimulationMetadata: [1x1 Simulink.SimulationMetadata]			
ErrorMessage: [0x0 char]			
LOADING BINARY STL-File: /Users/timlueth/Desktop/tmp_SG_LIB_EXP_23/sbm_temp_C1.stl			
Binary Header: COLOR=RGBA,MATERIAL=AAAABBBBBCCCCDDDD;SOLID "/Users/timlueth/Desktop/tmp_SG_LIB_E			
Color of solid defined as: "k"			
Alpha of solid defined as: 65.00			
Number of facets: 242			

Number of vertices: 126

SGN2SGT: 2 Frames ('B', 'F') decoded in STL format. LOADING BINARY STL-File: /Users/timlueth/Desktop/tmp SG LIB EXP 23/sbm temp D1.stl Binary Header: COLOR=RGBA, MATERIAL=AAAABBBBCCCCDDDD; SOLID "/Users/timlueth/Desktop/tmp_SG_LIB_E Color of solid defined as: "k' Alpha of solid defined as: 65.00 Number of facets: 98 Number of vertices: 56 SGN2SGT: 2 Frames ('B', 'F') decoded in STL format. LOADING BINARY STL-File: /Users/timlueth/Desktop/tmp_SG_LIB_EXP_23/sbm_temp_N2.stl Binary Header: COLOR=RGBA, MATERIAL=AAAABBBBCCCCDDDD; SOLID "/Users/timlueth/Desktop/tmp_SG_LIB_E Color of solid defined as: "k" Alpha of solid defined as: 65.00 Number of facets: 162 Number of vertices: 86 SGN2SGT: 2 Frames ('B', 'F') decoded in STL format. LOADING BINARY STL-File: /Users/timlueth/Desktop/tmp_SG_LIB_EXP_23/sbm_temp_N4.stl Binary Header: COLOR=RGBA, MATERIAL=AAAABBBBCCCCDDDD; SOLID "/Users/timlueth/Desktop/tmp_SG_LIB_E Color of solid defined as: "k" Alpha of solid defined as: 65.00 Number of facets: 162 Number of vertices: 86 SGN2SGT: 2 Frames ('B', 'F') decoded in STL format. LOADING BINARY STL-File: /Users/timlueth/Desktop/tmp_SG_LIB_EXP_23/sbm_temp_R1.FIX1.stl Binary Header: COLOR=RGBA, MATERIAL=AAAABBBBCCCCDDDD; SOLID "/Users/timlueth/Desktop/tmp_SG_LIB_E Color of solid defined as: "k' Alpha of solid defined as: 65.00 Number of facets: 249 Number of vertices: 133 SGN2SGT: 1 Frames ('B') decoded in STL format. LOADING BINARY STL-File: /Users/timlueth/Desktop/tmp_SG_LIB_EXP_23/sbm_temp_R1_M.stl Binary Header: COLOR=RGBA,MATERIAL=AAAABBBBBCCCCDDDD;SOLID "/Users/timlueth/Desktop/tmp_SG_LIB_E Color of solid defined as: "k' Alpha of solid defined as: 65.00 Number of facets: 473 Number of vertices: 243 SGN2SGT: 1 Frames ('B') decoded in STL format. LOADING BINARY STL-File: /Users/timlueth/Desktop/tmp SG LIB EXP 23/sbm temp R1 S.stl Binary Header: COLOR=RGBA, MATERIAL=AAAABBBBBCCCCDDDD; SOLID "/Users/timlueth/Desktop/tmp SG LIB E Color of solid defined as: "k" Alpha of solid defined as: 65.00 Number of facets: 465 Number of vertices: 167 SGN2SGT: 1 Frames ('B') decoded in STL format. LOADING BINARY STL-File: /Users/timlueth/Desktop/tmp SG LIB EXP 23/sbm temp R2.FIX1.stl Binary Header: COLOR=RGBA, MATERIAL=AAAABBBBCCCCCDDD; SOLID "/Users/timlueth/Desktop/tmp_SG_LIB_E Color of solid defined as: "k" Alpha of solid defined as: 65.00 Number of facets: 249 Number of vertices: 133 SGN2SGT: 1 Frames ('B') decoded in STL format. LOADING BINARY STL-File: /Users/timlueth/Desktop/tmp_SG_LIB_EXP_23/sbm_temp_R2_M.stl Binary Header: COLOR=RGBA, MATERIAL=AAAABBBBCCCCDDDD; SOLID "/Users/timlueth/Desktop/tmp_SG_LIB_E Color of solid defined as: "k" Alpha of solid defined as: 65.00 Number of facets: 473 Number of vertices: 243 SGN2SGT: 1 Frames ('B') decoded in STL format. LOADING BINARY STL-File: /Users/timlueth/Desktop/tmp_SG_LIB_EXP_23/sbm_temp_R2_S.stl Binary Header: COLOR=RGBA, MATERIAL=AAAABBBBBCCCCDDDD; SOLID "/Users/timlueth/Desktop/tmp_SG_LIB_E Color of solid defined as: "k" Alpha of solid defined as: 65.00 Number of facets: 465 Number of vertices: 167 SGN2SGT: 1 Frames ('B') decoded in STL format. LOADING BINARY STL-File: /Users/timlueth/Desktop/tmp_SG_LIB_EXP_23/sbm_temp_SG.stl Binary Header: COLOR=RGBA, MATERIAL=AAAABBBBCCCCDDDD; SOLID "/Users/timlueth/Desktop/tmp_SG_LIB_E Color of solid defined as: "k" Alpha of solid defined as: 65.00 Number of facets: 810 Number of vertices: 412 SGN2SGT: 2 Frames ('B', 'F') decoded in STL format.

CREATED A SOLID GEOMETRY OF THE FULL SIMULATION-MODEL 'SG_LIB_EXP_23' AT TIME: 0.10 SECONDS

Write the STL file on disk for 3D printing

SGwriteSTL(SG);

publishSGPDF:/Users/timlueth/Desktop//Users/timlueth/Desktop/

Final Remarks

Published with MATLAB® R2023a