Tutorial 54: Automated Design of Precision Joints by Screws or Ball Bearings

2020-07-29: Tim C. Lueth, Professor at Technische Universität München, Germany (URL: http://www.SG-Lib.org) - Last Change: 2020-08-07

Contents

- Complete List of all Tutorials with Publishable MATLAB Files of this Solid-Geoemtries Toolbox
- Motivation for this tutorial: (Originally SolidGeometry 4.9 required)
- Design of a simple symmetrical mechanism link of length 4 including the frames for base and follower
- Design of a simple asymmetrical mechanism link of length 4 including the frames for base and follower
- Design of a screw DIN 912 with M2.5 and length 8 =>
- Design of a nut DIN 985 with M2.5 and length 8
- Realization of rotating joints by means of a screw connection DIN 912 and DIN 985
- Realization of rotating joints by means of a screw connection DIN 912 (Tunnel) and DIN 985 (Pocket)
- Realisation of a rotating joint with a ball bearing and a bearing stop of the same size
- Create Plug to convert a Ball Bearing Solution into a screw fixing solution
- Automated Design of a rotating joint with a ball bearing and a DIN912-985 fixation with a nut-pocket
- Automated Design of a rotating joint with a ball bearing and a DIN912-985 fixation with a nut-tunnel
- Final Remarks

Complete List of all Tutorials with Publishable MATLAB Files of this Solid-Geoemtries Toolbox

The following topics are covered an explained in the specific tutorials:

- Tutorial 01: First Steps Using the VLFL-Toolbox for Solid Object Design
- Tutorial 02: Using the VLFL-Toolbox for STL-File Export and Import
- Tutorial 03: Closed 2D Contours and Boolean Operations in 2D
- Tutorial 04: 21/2D Design Using Boolean Operators on Closed Polygon Lists (CPL)
- Tutorial 05: Creation, Relative Positioning and Merging of Solid Geometries (SG)
- Tutorial 06: Relative Positioning and Alignment of Solid Geometries (SG)
- Tutorial 07: Rotation of Closed Polygon Lists for Solid Geometry Design
- Tutorial 08: Slicing, Closing, Cutting and Separation of Solid Geometries
- Tutorial 09: Boolean Operations with Solid Geometries
- Tutorial 10: Packaging of Sets of Solid Geometries (SG)
- Tutorial 11: Attaching Coordinates Frames to Create Kinematik Models
- Tutorial 12: Define Robot Kinematics and Detect Collisions
- Tutorial 13: Mounting Faces and Conversion of Blocks into Leightweight-structures
- Tutorial 14: Manipulation Functions for Closed Polygons and Laser Cutting (SVG)
- Tutorial 15: Create a Solid by 2 Closed Polygons
- Tutorial 16: Create Tube-Style Solids by Succeeding Polygons
- Tutorial 17: Filling and Bending of Polygons and Solids
- Tutorial 18: Analyzing and modifying STL files from CSG modeler (Catia)
- Tutorial 19: Creating drawing templates and dimensioning from polygon lines
- Tutorial 20: Programmatically Interface to SimMechanics Multi-Body Toolbox
- Tutorial 21: Programmatically Convert Joints into Drives (SimMechanics)
- Tutorial 22: Adding Simulink Signals to Record Frame Movements
- Tutorial 23: Automatic Creation of a Missing Link and 3D Print of a Complete Model
- Tutorial 24: Automatic Creation of a Joint Limitations
- Tutorial 25: Automatic Creation of Video Titels, Endtitels and Textpages
- Tutorial 26: Create Mechanisms using Universal Planar Links
- Tutorial 27: Fourbar-Linkage: 2 Pose Syntheses and Linkage Export for 3D Printing
- Tutorial 28: Fourbar-Linkage: 3 Pose Syntheses and Linkage Export for 3D Printing
- Tutorial 29: Create a multi body simulation using several mass points
- Tutorial 30: Creating graphical drawings using point, lines, surfaces, frames etc
- Tutorial 31: Importing 3D Medical DICOM Image Data and converting into 3D Solids
- Tutorial 32: Exchanging Data with a FileMaker Database
- Tutorial 33: Using a Round-Robin realtime multi-tasking system
- Tutorial 34: 2D Projection Images and Camera Coordinate System Reconstruction
- Tutorial 35: Creation of Kinematic Chains and Robot Structures
- Tutorial 36: Creating a Patient-Individual Arm-Skin Protector-Shel
- Tutorial 37: Dimensioning of STL Files and Surface Data
- Tutorial 38: Some more solid geometry modelling functionTutorial 39: HEBO Modules robot design
- Tutorial 40: JACO Robot Simulation and Control
- Tutorial 41: Inserting Blades, Cuts and Joints into Solid Geometries
- Tutorial 42: Performing FEM Stress and Displacement Analysis and Structural Optimization of Solids

- Tutorial 43: Performing FEM Structural Optimization (CAO) and Topological Optimization (SKO) of Solids
- Tutorial 44: Creation of solids and kinematics from 3D curves and transformation matrices
- Tutorial 45: Creation of Solids using the SG-Coder SGofCPLcommand
- Tutorial 46: Creating Fischertechnik compatible gear boxes using SGofCPLcommand
- Tutorial 47: Creating four-joints by 3 pose synthesis
- Tutorial 52: CPL Buffers and cw/ccw Orientation
- Tutorial 53: SKOL Soft Kill Option for Large Displacement by Yilun Sun
- Tutorial 54: Automated Design of Precision Joints by Screws or Ball Bearings
- Tutorial 55: Automated Design of Manipulators with Screws or Ball Bearing

Motivation for this tutorial: (Originally SolidGeometry 4.9 required)

```
dbprintf('The task of this tutorial is to show how to design revolute joints by screwing or ball bearings automatically.')
% function VLFL_EXP55
```

VLFL_EXP54: The task of this tutorial is to show how to design revolute joints by screwing or ball bearings automatically.

Design of a simple symmetrical mechanism link of length 4 including the frames for base and follower

Symmetrical joints are somewhat more appealing for the theoretical understanding

```
SGManipulatorLink(40,false); SG=ans
```

```
SG =
struct with fields:

VL: [132×3 double]
FL: [260×3 double]
Tname: {'F' 'B' 'F2' 'B2'}
T: {[4×4 double] [4×4 double] [4×4 double]}
TFiL: {[] [] [] []}
```


Design of a simple asymmetrical mechanism link of length 4 including the frames for base and follower

Unsymmetrical joints are only visually more appealing

```
SGManipulatorLink(40,true); SG=ans
```

```
SG = struct with fields:

VL: [194×3 double]

FL: [384×3 double]
```

```
FC: [384×3 double]
Tname: {'F' 'B' 'F2' 'B2'}
T: {[4×4 double] [4×4 double] [4×4 double]}
TFiL: {[] [] [] []}
```


Design of a screw DIN 912 with M2.5 and length 8 =>

The screw is not printed, but bought as V2A screw for example from Wegertseder

SGDIN912(2.5,8); Screw=ans

```
Screw =
    struct with fields:

        VL: [1649×3 double]
        FL: [3294×3 double]
        FC: [3294×3 double]

        Tname: {'B' 'F'}
        T: {[4×4 double] [4×4 double]}
        TPiL: {[] []}
        stampname: 'DIN912 M2.5'
```


Design of a nut DIN 985 with M2.5 and length 8

The threaded nut is not printed, but bought as V2A screw for example from Wegertseder

```
SGDIN985(2.5); Nut=ans
```

```
Nut =
    struct with fields:

         VL: [759×3 double]
         FL: [1518×3 double]

        Tname: {'B' 'F'}
         T: {[4×4 double] [4×4 double]}
        TFiL: {[] []}
        stampname: 'DIN985 M2.5'
```

publishSGPDF: 2023-10-03 08:51:56

Realization of rotating joints by means of a screw connection DIN 912 and DIN 985

This function creates three solids

- H Subtraction Screw Head side with frame 'C'
- N Subtraction Screw Nut side with frame 'C'
- S Model of a 912 screw and 985 Nut with frame 'C'

```
[H,N,S]=SGdesignDIN912DIN985([2.5 8], 'TT',20);

SG=SGsubtract(SG,H,'alignT',{'C','F'}); % Subtract the head side

SG=SGsubtract(SG,N,'alignT',{'C','B'}); % Subtract the thread nut side

S1=SGtransrelSG(S,SG,'alignT',{'C','F'}); % Create a screw connection model on the head side

S2=SGtransrelSG(S,SG,'matchT',{'C','B'}); % Create a screw connection model on the threaded nut side

SGfigure; view(-30,30);

SGTplotalpha(SG); VLFLplotlight(1,0.5);
```


Realization of rotating joints by means of a screw connection DIN 912 (Tunnel) and DIN 985 (Pocket)

This function creates three solids

- H Subtraction Screw Head side with frame 'C'
- N Subtraction Screw Nut side with frame 'C' with a rotation of -pi/2
- S Model of a 912 screw and 985 Nut with frame 'C'

```
SG=SGManipulatorLink(40,false);
[H,N,S]=SGdesignDIN912DIN985([2.5 8],'TP',20,-pi/2);
SG=SGSubtract(SG,H,'alignT',{'C','F'}); % Subtract the head side
SG=SGsubtract(SG,N,'alignT',{'C','B'}); % Subtract the thread nut side

S1=SGtransrelSG(S,SG,'alignT',{'C','F'}); % Create a screw connection model on the head side
S2=SGtransrelSG(S,SG,'matchT',{'C','B'}); % Create a screw connection model on the threaded nut side

SGfigure; view(-30,30);
SGTplotalpha(SG); VLFLplotlight(1,0.5);
```

```
SGdesignDIN912DIN985: Creating Nut M2.5
SGdesignDIN912DIN985: Creating Screw M2.5 x 8mm
SGdesignDIN912DIN985: Creating Head Side Bore 2.5mm x 2.5mm
```


Now show also the screws

```
SGplotalpha(S1,'r');
SGplotalpha(S2,'r');
VLFLplotlight(1,0.5);
```


Realisation of a rotating joint with a ball bearing and a bearing stop of the same size

```
SG=SGManipulatorLink(40,false);
[H,N,S,B]=SGdesignBallbearing([2.5 7 3.5 1],'S',20);
SG=SGsubtract(SG,H,'alignT',{'C','F'}); % Subtract the head side
```

```
SG=SGsubtract(SG,N,'alignT',{'C','B'}); % Subtract the thread nut side

SGfigure; SGplotalpha(S,'m'); SGplotalpha(B,'w'); view(-30,30)
```

```
VLFLcorrectdoubledvertex: 2 Collapsed Facets
VLFLcorrectdoubledvertex: 2 Collapsed Facets
VLFLcorrectdoubledvertex: 3 Collapsed Facets
VLFLcorrectdoubledvertex: 1 Collapsed Facets
VLFLcorrectdoubledvertex: 1 Collapsed Facets
FLrepair: (SGremsurfedgepoints) 1 open triangle(s) closed.
FLrepair: (SGremsurfedgepoints) No open boundaries finally exist!
SGboolh: Solid B is not watertight
publishSGPDF:<a href = "matlab: openbydoubleclick ('/Users/timlueth/Desktop')">/Users/timlueth/Desktop/</a><a href = "matlab: openbydoubleclick ('/Users/timlueth/Desktop')">/Users/timlueth/Desktop/</a>
```



```
S1=SGtransrelSG(B,SG,'alignT',{'C','B'}); % Ball Bearing belongs to the nut or large bore position S2=SGtransrelSG(S,SG,'matchT',{'C','F'}); % PLug Bearing belongs to the Screw or small bore position SGfigure; view(-30,30); SGplotalpha(SG); SGTframeplot(SG);
```


SGplotalpha(S1, 'r'); SGplotalpha(S2, 'g'); VLFLplotlight(1,0.5);

Create Plug to convert a Ball Bearing Solution into a screw fixing solution

```
SGbearing([1 7 3.5], 'plug'); SG=SGunion(ans); % This time the inner diameter must be smaller [H,N,S]=SGdesignDIN912DIN985([2.5 8]); % Prepare a screw connection
```



```
SH=SGsubtract(SG,H,'alignT',{'C','F'}); % Subtract the head side SGfigure; view(-30,-30); SGTplotalpha(SH,'w',0.5);
```

publishSGPDF: 2023-10-03 08:52:14

Automated Design of a rotating joint with a ball bearing and a DIN912-985 fixation with a nut-pocket

```
SG=SGManipulatorLink(40,true,5,7);
[H,N,S]=SGdesignDIN912DIN985radialbearing([2.5 7 3.5],[9.5 0],'TP',20,-pi);
SGN=SGsubtract(SG,H,'alignT',{'C','F'}); % Subtract the head side
SGN=SGsubtract(SGN,N,'alignT',{'C','B'}); % Subtract the thread nut side
SGfigure; SGplotalpha(SGN,'m'); view(+30,30);
SGTplotalpha(S,'w','','',SGN,'matchT',{'C','B'}); SGTplotalpha(S,'w','','',SGN,'alignT',{'C','F'});
```

```
SGdesignDIN912DIN985radialbearing: Creating Nut M2.5
SGdesignDIN912DIN985radialbearing: Creating Screw M2.50 x 10mm
SGdesignDIN912DIN985radialbearing: Number of DIN433 washers for a minimal wall size 1.0mm is n=2
SGdesignDIN912DIN985radialbearing: The exact wall size on bearing size is: 1.0mm. The thread length on bearing side is 4.5mm
SGdesignDIN912DIN985radialbearing: Creating Head Side Bore 2.6mm x 1.2mm
SGdesignDIN912DIN985radialbearing: Creating Bearing Insertion Tunnel 2.50mm x 7.00mm
SGdesignDIN912DIN985radialbearing: Creating Head Insertion Pocket 4.6mm x 12.1mm x 20mm
SGdesignDIN912DIN985radialbearing: Creating Nut Side Bore 2.5mm x 5.2mm
SGdesignDIN912DIN985radialbearing: Creating Nut Insertion Tunnel 5.0mm x 20.0mm
SGdesignDIN912DIN985radialbearing: Creating Head Insertion Pocket 5.0mm x 3.6mm x 20mm
SGdesignDIN912DIN985radialbearing: Creating Head Insertion Pocket 5.0mm x 3.6mm x 20mm
```


Automated Design of a rotating joint with a ball bearing and a DIN912-985 fixation with a nut-tunnel

```
SG=SGManipulatorLink(40,true,5,7);
[H,N,S] = SGdesignDIN912DIN985 radial bearing([2.5\ 7\ 3.5],[8\ -1], 'T',20);
                                             % Subtract the head side
SGN=SGsubtract(SG,H,'alignT',{'C','F'});
SGN=SGsubtract(SGN,N,'alignT',{'C','B'});
                                               % Subtract the thread nut side
SGfigure; SGplotalpha(SGN, 'm'); view(+30,30);
SGTplotalpha(S, `w', '', 'SGN, 'matchT', \{'C', 'B'\}); \quad SGTplotalpha(S, 'w', '', 'SGN, 'alignT', \{'C', 'F'\}); \\
SGwriteSTL(SGN)
```

```
SGdesignDIN912DIN985radialbearing: Creating Nut M2.5
{\tt SGdesignDIN912DIN985radialbearing: Creating Screw M2.50 \ x \ 8mm}
{\tt SGdesignDIN912DIN985radial bearing: \ Number \ of \ DIN433 \ washers \ for \ a \ minimal \ wall \ size \ 1.0mm \ is \ n=2}
SGdesignDIN912DIN985radialbearing: The exact wall size on bearing size is: 1.0mm. The thread length on bearing side is 4.5mm
{\tt SGdesignDIN912DIN985radialbearing: Creating Head Side Bore 2.6mm \ x \ 1.2mm}
{\tt SGdesignDIN912DIN985radialbearing: Creating Bearing Insertion Tunnel 2.50mm } \times 7.00mm
SGdesignDIN912DIN985radialbearing: Creating Head Insertion Pocket 4.6mm x 10.6mm x 20mm
SGdesignDIN912DIN985radialbearing: Creating Nut Side Bore 2.5mm x 3.7mm
{\tt SGdesignDIN912DIN985 radial bearing: Creating \ Nut \ Insertion \ Tunnel \ 5.0mm \ x \ 20.0mm}
{\tt SGdesignDIN912DIN985 radial bearing: Creating \ Head \ Insertion \ Pocket \ 5.0mm \ x \ 3.6mm \ x \ 20mm}
SGdesignDIN912DIN985radialbearing: ======
publishSGPDF:<a href = "matlab: openbydoubleclick ('/Users/timlueth/Desktop')">/Users/timlueth/Desktop/</a><a href = "matlab: openbydoubleclick ('/Users/timlueth/Desktop')">/Users/timlueth/Desktop'/<a>
ans =
  '/Users/timlueth/Desktop/publishSGPDF SGN_(2023-10-03).STL'
```


Final Remarks

close all
VLFLlicense

Published with MATLAB® R2023a