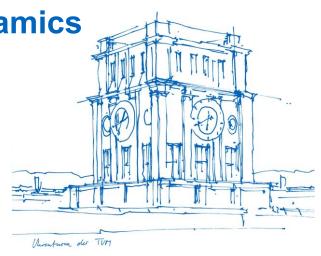


Sparse Identification of Unknown Equation of Motion Terms Associated with Complex Joint Phenomena in Multibody System Dynamics

T. Slimak, A. Zwölfer, F. Trainotti, D. Rixen [tomas.slimak, andreas.zwoelfer, francesco.trainotti, rixen]@tum.de

Paper ID 65, July 25th, 2023



The Team

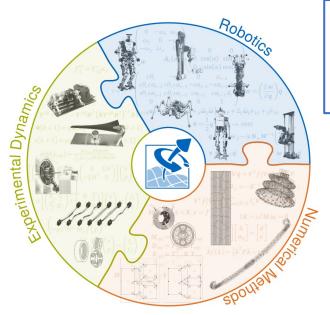
T. Slimak

A. Zwölfer

F. Trainotti

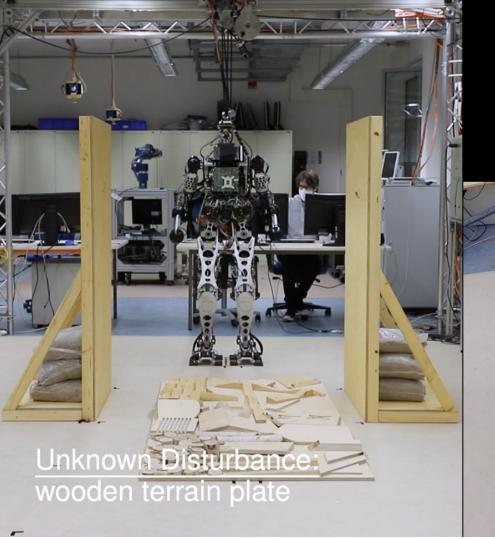
D. Rixen

Research @ TUM-AM

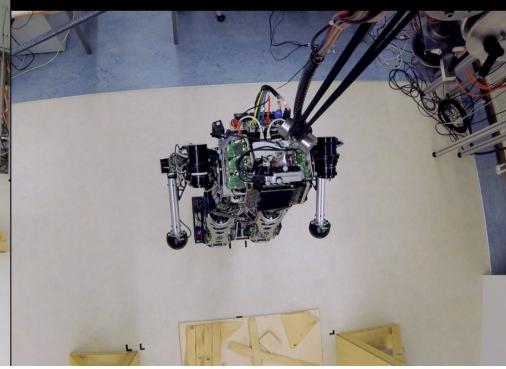


"[...] Experimental and Numerical Methods for Efficient Mechanical System Dynamics Simulations, [...] Build Novel Robotic Systems."

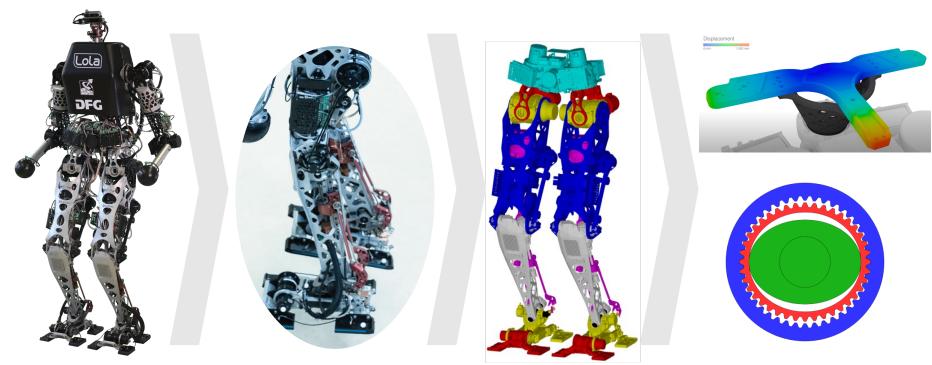
- → Model Reduction
- Substructuring
- Data-Driven Reduction & Dynamics
- Joint Dynamics
- ☐ Flexible Multibody Dynamics
- Steady State Solution Techniques
- □ Humanoid Robots



Video of *LOLA*

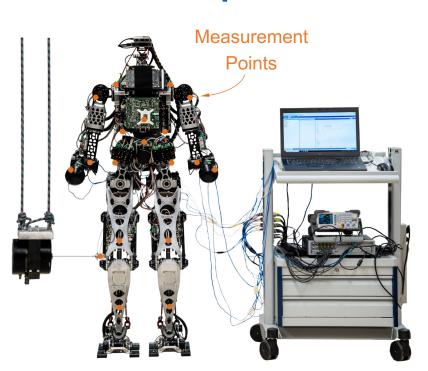


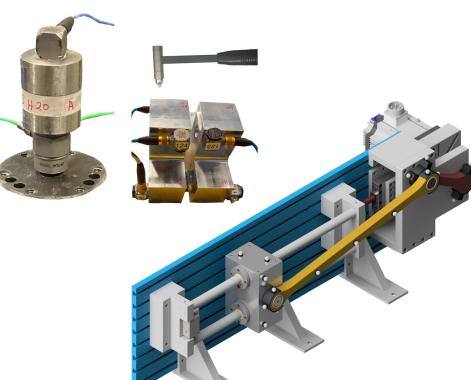
AM's Humanoid Robot LOLA



T. Slimak, A. Zwölfer, F. Trainotti, D. Rixen – ID 65

Data From Experiments & Simulations





Sparse Identification of Non-Linear Dynamics

$$M(q) \ddot{q}(t) = f^{k}(q(t), \dot{q}(t), t) + f^{u}(q(t), \dot{q}(t), t)$$
$$f^{u}(q(t), \dot{q}(t), t) \approx \Xi^{T} \lambda(q(t), \dot{q}(t), t)$$

$$\lambda(\boldsymbol{q}(t), \dot{\boldsymbol{q}}(t), t) = \begin{bmatrix} \lambda_{1}(\boldsymbol{q}(t), \dot{\boldsymbol{q}}(t), t) \\ \vdots \\ \lambda_{L}(\boldsymbol{q}(t), \dot{\boldsymbol{q}}(t), t) \end{bmatrix} \stackrel{\text{e.g.}}{=} \begin{bmatrix} 1 \\ \boldsymbol{q}(t)^{\circ n} \\ \dot{\boldsymbol{q}}(t)^{\circ n} \\ \sin(\boldsymbol{q}(t)) \\ \text{sgn}(\dot{\boldsymbol{q}}(t)) \\ \vdots \end{bmatrix}$$

Sparse Identification of Non-Linear Dynamics

$$Q = \begin{bmatrix} \boldsymbol{q}(t_1) & \dots & \boldsymbol{q}(t_M) \end{bmatrix} \quad \boldsymbol{\Lambda} = \begin{bmatrix} \boldsymbol{\lambda}(\boldsymbol{q}(t_1), \dot{\boldsymbol{q}}(t_1), t_1) & \dots \\ \dot{\boldsymbol{Q}} = \begin{bmatrix} \dot{\boldsymbol{q}}(t_1) & \dots & \dot{\boldsymbol{q}}(t_M) \end{bmatrix} & \dots & \boldsymbol{\lambda}(\boldsymbol{q}(t_M), \dot{\boldsymbol{q}}(t_M), t_M) \end{bmatrix}$$

$$\ddot{\boldsymbol{Q}} = \begin{bmatrix} \ddot{\boldsymbol{q}}(t_1) & \dots & \ddot{\boldsymbol{q}}(t_M) \end{bmatrix}$$

$$\ddot{\boldsymbol{Q}} = \begin{bmatrix} \ddot{\boldsymbol{q}}(t_1) & \dots & \ddot{\boldsymbol{q}}(t_M) \end{bmatrix}$$

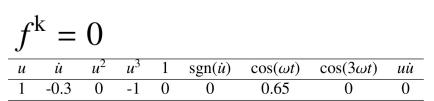
$$\boldsymbol{\Xi} = \begin{bmatrix} \boldsymbol{\xi}_1 & \dots & \boldsymbol{\xi}_S \end{bmatrix} \qquad \boldsymbol{M} \ddot{\boldsymbol{Q}} \approx \boldsymbol{F}^k + \boldsymbol{\Xi}^\top \boldsymbol{\Lambda}$$
$$\boldsymbol{F}^k = \begin{bmatrix} \boldsymbol{f}^k \left(\boldsymbol{q} \left(t_1 \right), \dot{\boldsymbol{q}} \left(t_1 \right), t_1 \right) & \dots & \boldsymbol{f}^k \left(\boldsymbol{q} \left(t_M \right), \dot{\boldsymbol{q}} \left(t_M \right), t_M \right) \end{bmatrix}$$

Sequentially Thresholded Least Squares (STLS)

Algorithm 1 STLS pseudocode

- 1: Input: $\kappa, \Lambda, F = F^k M\ddot{Q}$
- 2: Output: **Ξ**
- 3: $\mathbf{\Xi} = \underset{\mathbf{\Xi} \in \mathbb{R}}{\operatorname{arg min}} \| \mathbf{F}^{\top} \mathbf{\Lambda}^{\top} \mathbf{\Xi} \|_{2}$
- 4: **for** iter = $1, 2, 3, \dots$ **do**
- 5: $\mathbf{\Xi}\left(|\Xi_{ij}|<\kappa\right)\leftarrow 0$
- 6: **for** $c = 1, 2, ..., n_c$ **do**
- 7: $\operatorname{col}_{c} \Xi \left(|\Xi_{ij}| \geq \kappa \right) \leftarrow \underset{\Xi \in \mathbb{R}}{\operatorname{arg \, min}} \left\| \operatorname{col}_{c} F^{\top} \Lambda_{*}^{\top} \operatorname{col}_{c} \Xi \left(|\Xi_{ij}| \geq \kappa \right) \right\|_{2}$

Simulated Example: Duffing Oscillator

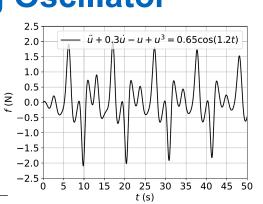


$$f^{\mathbf{k}} = 0.65 \cos(1.2t)$$

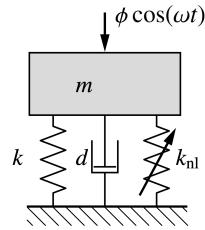
и	и	u^2	u^3	1	sgn(<i>ù</i>)	$\cos(\omega t)$	$\cos(3\omega t)$	ий
1	-0.3	0	-1	0	0	0	0	0

$$f^{k} = 0.65\cos(1.2t) + u - 0.3\dot{u}$$

\overline{u}	ù	u^2	u^3	1	sign(<i>u</i>)	$\cos(\omega t)$	$\cos(3\omega t)$	ий
0	0	0	-1	0	0	0	0	0



 $cos(1.2t) \\
cos(3.6t)$



$$m\ddot{u} + d\dot{u} + ku + k_{\text{nl}}u^{3} = \phi \cos(\omega t)$$

$$= \begin{bmatrix} u \\ \dot{u} \\ u^{2} \\ u^{3} \\ 1 \\ \text{sgn}(\dot{u}) \end{bmatrix}$$

T. Slimak, A. Zwölfer, F. Trainotti, D. Rixen – ID 65

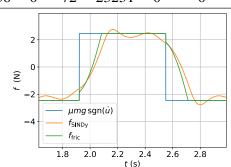
Simulated Example: Friction Slider

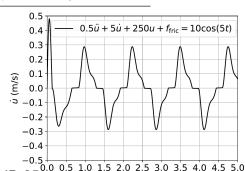
$$f^{k} = 0$$

-	и	ù	u^2	u^3	1	sgn(<i>i</i> u)	$\cos(\omega t)$	$\cos(3\omega t)$	ий	$f_{\rm fric}\left(u,\dot{u}\right)$
	-250	-5	0	0	0	0	10	0	0	-1

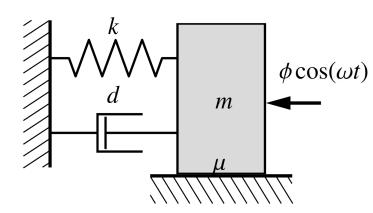
$$f^{k} = 10\cos(5t) - ku - du$$

и	Ü	u^2	u^3	1	sign(<i>ù</i>)	$\cos(\omega t)$	$\cos(3\omega t)$	ий
136	0	-72	23231	0	0	-7	0	-12





t (s)

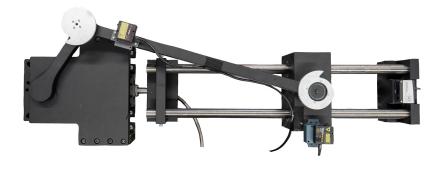


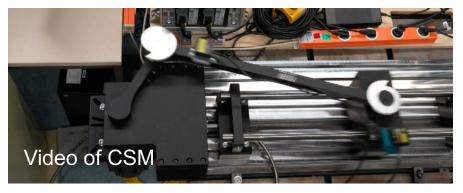
$$m\ddot{u} + d\dot{u} + ku + f_{\text{fric}}(u, \dot{u}) = \phi \cos(\omega t)$$

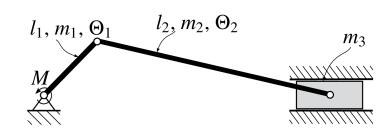
$$f_{\text{fric}} = \begin{cases} \mu mg \operatorname{sgn}(\dot{u}) & \text{for slip} \\ \pm \mu mg + k_{\mu} \left(u - u_{\text{csp}} \right) + d_{\mu} \dot{u} & \text{for stick} \end{cases}$$

T. Slimak, A. Zwölfer, F. Trainotti, D. Rixen – ID 65

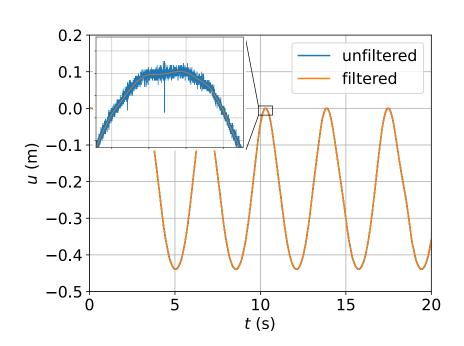
Experimental Example: Crank-Shaft Mechanism

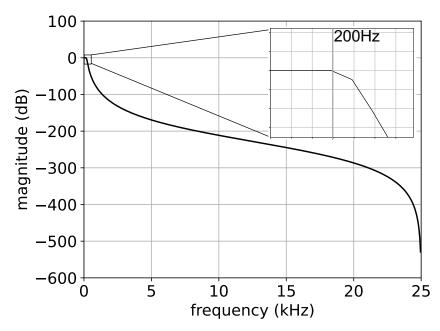




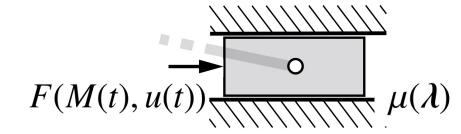


Experimental Example: Crank-Shaft Mechanism





Experimental Example: Crank-Shaft Mechanism

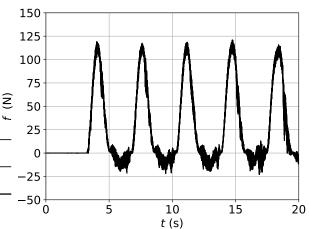


Experimental Data:

и	ù	u^2	u^3	1	sgn(<i>i</i> u)	$\sin(\omega t)$	ий	F(t)
85	0	548	759	0	0	0	0	0

Simulation Data:

и	ù	u^2	u^3	1	sgn(ù)	$\sin(\omega t)$	ий	F(t)
350	0	1632	2242	21	-19	0	0	1



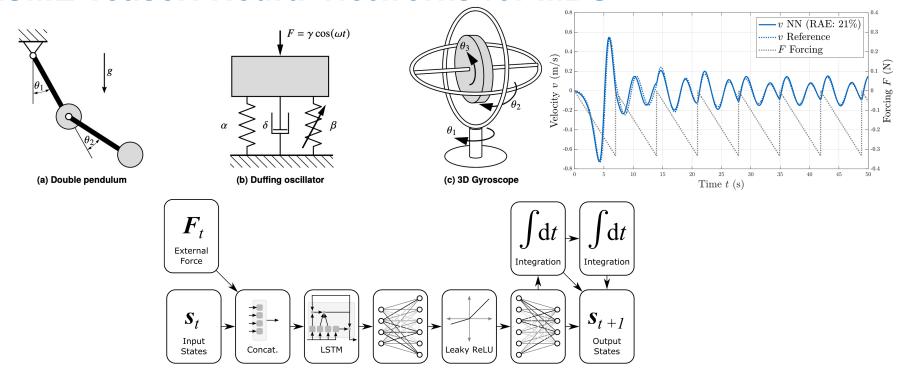
Take Home Messages

☐ Data-driven identification of analytical expressions for unknown forces is possible

☐ Works reliably with numerical data, real-world application is more difficult

 \Box Good q, \dot{q}, \ddot{q} and excitation measurements are paramount

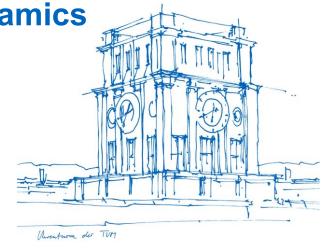
ASME Teaser: Neural Networks for MBS



Sparse Identification of Unknown Equation of Motion Terms Associated with Complex Joint Phenomena in Multibody System Dynamics

T. Slimak, A. Zwölfer, F. Trainotti, D. Rixen [tomas.slimak, andreas.zwoelfer, francesco.trainotti, rixen]@tum.de

Paper ID 65, July 25th 2023



Extra: Sequentially Thresholded Least Squares (STLS)

```
import numy as np
from numpy.linalg import lstsq

Xi = lstsq(Lambda.T,F.T,rcond=None)[0]
for k in range(10):
    smallInds = abs(Xi) < kappa
    Xi[smallInds] = 0
    for i in range(np.size(F,0)):
        bigInds = np.invert(smallinds[:,i])
        Xi[bigInds,i] = lstsq(Lambda.T[:,bigInds],F.T[:,i])[0]</pre>
```