

How to AI? Timeseries Prediction using Neural Networks

Tomas Slimak

Bojidar Todorov

Andreas Zwölfer

March 29th 2023

Workshop Goal

Tomas Slimak | How to AI? | ICAM 2023 Workshop

Outline

- Motivation
- Generating Training Data
- Creating Network
- Evaluating Network Performance

Learning Outcomes

- Understanding NN Basics
- Gaining some matlab experience
- Maybe some ideas how you can use NNs

Motivation - Types of Neural Networks (Classification)

Input Data x Boundary conditions, Seed state, Goal

Efficient non-linear information processing pipelines

Output Data y

Feedforward Neural Networks (Convolution)

Gradient Descent Optimization

Labels + Confidence Values: 1: 4%, 2: 0%, 3: 96%...

Motivation - Types of Neural Networks (Generative Adversaries)

Text describing the desired outcome or image prompts

Input Data x Boundary conditions, Seed state, Goal

Output Data y

Generator + Discriminator Network Competing to Fool Each Other

Motivation - Types of Neural Networks (Recurrent)

Motivation - Types of Neural Networks (Recurrent)

Case Study

Reduction + Characterization of unkown dynamics

Case Study

Table 1.1:	Duffing	Oscillator	Parameters
------------	---------	------------	------------

	variable name	symbol	Default Value	Unit
mass	mass	m	1	kg
damping	delta	δ	0.3	Ns/m
non-linear damping	epsilon	ϵ	0	Ns ³ /m ³
stiffness	alpha	α	-1	N/m
non-linear stiffness	beta	β	1	N/m ³
excitation amplitude	e gamma	γ	0.65	Ν
excitation frequency	omega	ω	1.2	rad/s

$$m\ddot{x} + \delta\dot{x} + \epsilon\dot{x}^3 + \alpha x + \beta x^3 = F(t)$$

Case Study

Results

How did we get here?

TABLE 3: DUFFING OSCILLATOR WITH PREVIOUS STEPS

Previous Steps	RMSE (m)	RMSE (m/s)	
reference	0.5046	0.2654	
6	0.4096	0.2376	
7	0.2462	0.1531	
8	0.2422	0.1347	
9	0.3469	0.1874	
10	0.4219	0.2108	

Research direction

Research direction: Extrapolation

FIGURE 10: DUFFING OSCILLATOR TRAINED ON 20 s OF DATA, EXTRAPOLATING WITH UNSEEN EXCITATION FORCE TO 50 s

Research direction

- Adding more physics to cost function
- Real measurements

Automatic Hyper-parameter Optimization

- Monte Carlo
- Evolutionary
- Gradient Based

FIGURE 9: EXAMPLE OF NN HAVING DIFFICULTY PREDICT-ING THE TRANSITION BETWEEN THE TRANSIENT- AND STEADY-STATE-PHASE

Reference Simulation

Table 1.1: Duffing	Oscillator	Parameters
--------------------	------------	------------

	variable name	symbol	Default Value	Unit
mass	mass	m	1	kg
damping	delta	δ	0.3	Ns/m
non-linear damping	g epsilon	ϵ	0	Ns ³ /m ³
stiffness	alpha	α	-1	N/m
non-linear stiffness	beta	β	1	N/m ³
excitation amplitud	e gamma	Ŷ	0.65	Ν
excitation frequency	y omega	ω	1.2	rad/s

1 % Example of matlab struct syntax
2 structure_name.first_variable_name = 0; % kg
3 structure_name.second_variable_name = 0; % Ns/m

$$m\ddot{x} + \delta\dot{x} + \epsilon\dot{x}^3 + \alpha x + \beta x^3 = F(t)$$

 $F(t) = \gamma \cos(\omega t)$

Reference Simulation

	variable name	symbol	Default Value	Unit
mass	mass	m	1	kg
damping	delta	δ	0.3	Ns/m
non-linear damping	epsilon	ϵ	0	Ns ³ /m ³
stiffness	alpha	α	-1	N/m
non-linear stiffness	beta	β	1	N/m ³
excitation amplitude	e gamma	Ŷ	0.65	Ν
excitation frequency	omega	ω	1.2	rad/s

Table 1.1: Duffing Oscillator Parameters

1 % Example of matlab struct syntax
2 structure_name.first_variable_name = 0; % kg
3 structure_name.second_variable_name = 0; % Ns/m

$$n\ddot{x} + \delta\dot{x} + \epsilon\dot{x}^3 + \alpha x + \beta x^3 = F(t)$$

 $F(t) = \gamma \cos(\omega t)$

Conn1

Generate Dataset

- 1. Vary force frequency and amplitude
- 2. Run simulation
- 3. Store data
- 4. Repeat

Network evaluation

Explicit calculation of velocity Implicit calculation of position

$$v_{t+1} = v_t + \Delta t a_t$$
 and $x_{t+1} = x_t + \Delta t v_{t+1}$

Relative Area Error

$$RAE \equiv \frac{\sum_{i=1}^{N} |y_i - \hat{y}_i|}{\sum_{i=1}^{N} |y_i|}$$

Add Noise?

Roughly 5% of signal amplitude

