

Identification of Material Properties for Resins used in SLA 3D Printing

T. Slimak, F. Trainotti, D.J. Rixen

#15019 IMAC-XLI Conference, February, 2023

LOLA Motivation

Tomas Slimak | TUM | Chair of Applied Mechanics

Stereolithography (SLA) 3D Printing

- Targeted photochemical process cross-links liquid monomers to form solid polymer objects
- Various filler materials used to achieve different mechanical properties
- Large number of manufacturing parameters which effect resulting solids

Experimental Characterization Techniques

Transmissibility-based Uniaxial Shaker Characterization

 $\overline{}$

Experimental Characterization Techniques

Transmissibility-based Uniaxial Shaker Characterization (Theory)

Tomas Slimak | TUM | Chair of Applied Mechanics

Amplitude and Displacement Maps

$$k^*(y-x) = -m\ddot{y}$$

 Δy F $k' = |k^*| cos(\delta)$
 $F(t) = \hat{F}sin(\omega t + \delta)$ $\Delta y(t) = \hat{\Delta y}sin(\omega t)$ $\eta = \frac{k''}{k'}$ 5

Experimental Characterization Techniques

A

Inverse Substructuring

- 6 DoF Characterization
- Can determine low material damping Principle:

$$\underbrace{\begin{bmatrix} \mathbf{Z}_{2_{A}2_{A}}^{J} & \mathbf{Z}_{2_{A}2_{B}}^{J} \\ \mathbf{Z}_{2_{B}2_{A}}^{J} & \mathbf{Z}_{2_{B}2_{B}}^{J} \end{bmatrix}}_{\mathbf{Z}_{2_{2}}^{J}} = \underbrace{\begin{bmatrix} \mathbf{Z}_{2_{A}2_{A}}^{A} + \mathbf{Z}_{2_{A}2_{A}}^{J} & \mathbf{Z}_{2_{A}2_{A}}^{J} \\ \mathbf{Z}_{2_{B}2_{A}}^{J} & \mathbf{Z}_{2_{B}2_{B}}^{B} + \mathbf{Z}_{2_{B}2_{B}}^{J} \end{bmatrix}}_{\mathbf{Z}_{2_{B}2_{B}}^{ABB}} - \underbrace{\begin{bmatrix} \mathbf{Z}_{2_{A}2_{A}}^{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{Z}_{2_{B}2_{B}}^{B} \end{bmatrix}}_{\mathbf{Z}_{22}^{ABB}}$$

Assuming rigid end-masses, no cross-coupling and massless spring

- Measure AJB
- Projection to virtual point + Integration
- Invert

Tomas Slimak | TUM | Chair of Applied Mechanics

 $\mathbf{Z}_{22}^{J} = \begin{vmatrix} -\mathbf{Z}_{2_{A}2_{B}}^{J} & \mathbf{Z}_{2_{A}2_{B}}^{J} \\ \mathbf{Z}_{2_{B}2_{A}}^{J} & -\mathbf{Z}_{2_{B}2_{A}}^{J} \end{vmatrix}$

Comparison of Characterization Techniques

Substructuring

- FBS friendly
- 6 DoF

Uniaxial Shaker

 Large amplitude and frequency range

Also component-level Cheap and fast

DMA/ Hydraulic Machines

- Expensive
- Extra parameters: preload, temperature, static
- Accurate, repeatable
- Only material level

Amplitude variation (non-linearity) 1 DoF Automatized

Implementation of Transmissibility Control

- 1. Live Butterworth bandpass filtering
- 2. Multi-rate discrete peak-picking to determine amplitude
- 3. Analytical integration and subtraction to determine strain
- 4. Adjustment of shaker excitation to reach desired motion
- 5. Automatized measurement procedures and failure detection

dSPACE

Tomas Slimak | TUM | Chair of Applied Mechanics

Analysis Overview

- Vertically and horizontally printed samples
- Large, middle and small samples
- 10, 15 and 20 minute curing time
- Radial and axial analysis

- 300 to 700 Hz excitation
- 0.005 to 0.025% strain

Issues During Measuring & Testing

- Printing consistent samples with correct geometries and no defects
- Attachment via cyanoacrylate
- Limited shaker force/power
- Excitation of shaker/table eigenfrequencies

Substructuring Results

Substructuring Results

Tomas Slimak | TUM | Chair of Applied Mechanics

Transmissibility Results

Tomas Slimak | TUM | Chair of Applied Mechanics

Outlook

- Explore the issues and repeatability
- Evaluate transferability to complex geometries
- Flexible resins

Takeaway Points

- Cheap and fast identification of material properties is possible
- SLA components are non-isotropic
- Manufacturing parameters have a large impact on material behavior

Thank you for your time

I'd be happy to answer any questions you might have

Identification of Material Properties for Resins used in SLA 3D Printing

T. Slimak, F. Trainotti, D. J. Rixen

#15019

IMAC-XLI Conference, February, 2023