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Towards Machine Learning at the Edge

The Evolution of Tiny Machine Learning (TinyML)
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The Evolution of Tiny Machine Learning (TinyML)
Towards Machine Learning at the Edge
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The Evolution of Tiny Machine Learning (TinyML)
Challenges
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The Evolution of Tiny Machine Learning (TinyML)
Challenges
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Optimization

• Make clever decisions to co-design Sensing and Machine Learning

Hardware-in-the-loop 

• Measure performance directly on the edge system

Automation

• Mitigate time consuming manual tuning

SMiLe : Automated End-to-end Sensing and Machine Learning Co-Design, T.Goyal, P.Huang, F.Sutton, B.Maag and P.Sommer, EWSN, October 3-5, 2022

Our 3-fold Approach

Migration from Cloud Analytics to Edge Analytics

In our paper, we deliver an automated framework focussing on optimizing the Sensing 

and Machine Learning Co-Design using feedback from Hardware-in-the-loop
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SMiLe framework
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Golden 
binary

SMiLe – ABB Solution to Edge Analytics

Automated end-to-end edge analytics

Combined global metric

Accuracy Mem Energy
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Sensing Parameters
Sampling Frequency and Sensing Window

Sensing
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Need for Sensing and ML Co-Design
Impact of Sampling Frequency
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Need for Sensing and ML Co-Design
Impact of Sensing Window Size
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Sensing and ML Co-Optimization
Co-Optimization of sensing and ML using SMiLe
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Sensing and ML Co-Optimization
Multi-objective optimization

Multiple Objectives: Validation 
Accuracy, # Parameters, 
Sensing Energy, Sensing 

Latency, Inference Energy, 
Inference Latency

Identify 
ranges
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Weights = 
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Use Weighted 
Sum as Global 
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Motor Testbed @ ABB Swiss Research Center

Smart Sensor Connected to Testbed Power & Timing Profiler

Infrastructure
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Bearing Fault Creation

Problem

• Type: A 3-class classification problem (0g, 0.25g and 1g of metallic dust)

• Input Data: Acceleration

• Objective: Perform Multi-objective optimization based on Accuracy, # Parameters, Energy and Latency

Motor Health Prediction
Problem Formulation

Add «metallic-dust» to 
the bearing 
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Remove load-side 
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and 1g metallic dust
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Motor Health Prediction
Design Space
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1                   
Sampling Frequency

Motor Health Prediction
Sampling frequency – how often should we read the sensor?

• Sensing Energy ∝ 

Reduce energy requirement by finding optimal sampling frequency using SMiLe

Frequency vs Inference EnergyFrequency vs Sensing Energy Frequency vs # Parameters

• Inference Energy and # Parameters are highly correlated

• Inference Energy has a convex trend with Sampling Frequency; thus it has a minima

• Need to explore design space using SMiLe for finding the minima of Inference Energy 
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Motor Health Prediction
Sensing Window (# Samples) – what is a good amount of data for ML prediction

• Sensing Energy ∝ Sensing Window Size

• Inference energy ∝ Sensing Window Size ( with few outliers )

• # Parameters follow no clear trend with Sensing Window Size

• Need to explore design space using SMiLe for finding the minimum # Parameters

Reduce energy requirement by decreasing Sensing Window size

Sensing  Window vs Inference EnergySensing Window vs Sensing Energy Sensing  Window vs # Parameters

SMiLe : Automated End-to-end Sensing and Machine Learning Co-Design, T.Goyal, P.Huang, F.Sutton, B.Maag and P.Sommer, EWSN, October 3-5, 2022| Slide 18October 4
2022

© ABB 



—
SMiLe exploration
8-hour experiment for Motor Health Prediction

SMiLe design space exploration

Exploration of Hyper-Parameters 
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SMiLe for Edge Analytics

Model improvement with SMiLe Development time improvement with SMiLe

Results for Motor Health Prediction
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Validation Accuracy
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Our Contributions …

… SMiLe for automated optimization of sensing and machine learning Co-Design

… optimization based on real-time feedback from Hardware-in-the-loop

… validation of SMiLe on real-world use case – Motor Health Prediction

Conclusions

Our Results show that …

… sensing Hyper-Parameters are important to be optimized alongside ML

… SMiLe significantly reduces exploration time and improves exploration results

… Hardware-in-the-loop enables direct optimization of energy and latency
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Motivation
Impact of SMiLe on Real world use case - Motor Health Prediction

0

2

4

6

8

10

0

250

500

750

1000

1200

2 4 6 8 10 150 300 450 600 750

S
e

n
s

in
g

 E
n

e
rg

y
 [

m
J]

Inference Energy [mJ]

S
e

n
s

in
g

 L
a

te
n

c
y

[m
s

]

Inference Latency [ms]

Manual ML 
Optimization

Manual sensing
and ML Co-Design

SMiLe

88.03%

98.6%

78.87%

90%

93.27%

98.62%

63%

86.5%

Training Hyper-Parameters
Model Hyper-Parameters

Batch Size, # of Epochs, Learning rate, Architecture
# of Layers, Hidden Size, # of Channels, Kernel Size

Sensing Hyper-Parameters Sampling Frequency, Sensing Window Size

Real-time motor fault detection by 1-d convolutional neural networks. IEEE Transactions on Industrial Electronics, 63(11), 2016; A deep autoencoder-based CNN framework for bearing 
fault classification in induction motors. Sensors, 21(24), 2021; Deep Learning & its applications to machine health monitoring. Mechanical Systems & Signal Processing, 115, 2019.

SMiLe : Automated End-to-end Sensing and Machine Learning Co-Design, T.Goyal, P.Huang, F.Sutton, B.Maag and P.Sommer, EWSN, October 3-5, 2022Energy requirements & Latency are minimum when                                                                               
Sensing & ML parameters are co-optimized using SMiLe
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ML Data Processing Pipeline

1. Data Exploration

– Visualization (e.g. 
histrogram/scatter/line)

– Covariance Matrix

– Dimensionality Reduction

2. Data Cleaning

– Local Outlier Factor

– Isolation Forest

– Quantile

3. Spectrum Analysis

– FFT

– Spectrogram

– Power Spectrum Density

4. Machine Learning

– Logistic Regresion, LDA

– KNN, Decision Tree, Boosting

– Neural Networks
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TVM/OctoML
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