

INTERNATIONAL CONFERENCE ON EDGE WIRELESS SYSTEMS AND NETWORKS (EWSN), OCTOBER 3-5, 2022

SMiLe: Automated End-to-end Sensing and Machine Learning Co-Design

Tanmay Goyal, Pengcheng Huang, Felix Sutton, Balz Maag and Philipp Sommer, ABB Research Switzerland

Towards Machine Learning at the Edge

Towards Machine Learning at the Edge

Challenges

Challenges

Migration from Cloud Analytics to Edge Analytics

Our 3-fold Approach

Optimization

• Make clever decisions to co-design Sensing and Machine Learning

Hardware-in-the-loop

• Measure performance directly on the edge system

Automation

• Mitigate time consuming manual tuning

In our paper, we deliver an automated framework focussing on optimizing the Sensing and Machine Learning Co-Design using feedback from Hardware-in-the-loop

© ABB

SMiLe: Automated End-to-end Sensing and Machine Learning Co-Design

SMiLe framework

Automated end-to-end edge analytics

© ABB

ABB

SMiLe – ABB Solution to Edge Analytics

Automated end-to-end edge analytics

© ABB October 4

SMiLe : Automated End-to-end Sensing and Machine Learning Co-Design

Sensing Parameters

Sampling Frequency and Sensing Window

© ABB October 4

Need for Sensing and ML Co-Design

Impact of Sampling Frequency

© ABB

October 4 | Slide 10 SMiLe : Automated End-to-end Sensing and Machine Learning Co-Design, T.Goyal, P.Huang, F.Sutton, B.Maag and P.Sommer, EWSN, October 3-5, 2022

Need for Sensing and ML Co-Design

Impact of Sensing Window Size

Sensing and ML Co-Optimization

Co-Optimization of sensing and ML using SMiLe

Parallel Co-Optimization of *SMiLe*

Co-Optimization of sensing and ML using *SMiLe*

Sensing and ML Co-Optimization

Multi-objective optimization

© ABB

October 4 2022

SMiLe : Automated End-to-end Sensing and Machine Learning Co-Design

Motor Testbed @ ABB Swiss Research Center

Infrastructure

© ABB October 4

Problem Formulation

Bearing Fault Creation

and 1g metallic dust

Problem

- Type: A 3-class classification problem (0g, 0.25g and 1g of metallic dust)
- Input Data: Acceleration
- **Objective:** Perform Multi-objective optimization based on Accuracy, # Parameters, Energy and Latency

Design Space

Total possible Configurations: 13,440,000,000

© ABB

Sampling frequency – how often should we read the sensor?

 Sensing Energy
 ¹
 Sampling Frequency

- Inference Energy and # Parameters are highly correlated
- Inference Energy has a convex trend with Sampling Frequency; thus it has a minima
- Need to explore design space using *SMiLe* for finding the minima of Inference Energy

Reduce energy requirement by finding optimal sampling frequency using *SMiLe*

© ABB

Sensing Window (# Samples) – what is a good amount of data for ML prediction

- Sensing Energy ∝ Sensing Window Size
- Inference energy < Sensing Window Size (with few outliers)
- # Parameters follow no clear trend with Sensing Window Size
- Need to explore design space using *SMiLe* for finding the minimum *#* Parameters

Reduce energy requirement by decreasing Sensing Window size

© ABB

October 4 2022

SMiLe exploration

8-hour experiment for Motor Health Prediction

Exploration of Hyper-Parameters 60 100 ر ا **S**14000 **1**2000 45 75 0.98 8000 8000 Count Count 30 50 **Ā** 0.96 **Validation** 0.94 Validation ã 6000 #Models 15 25 4000 2000 0 0 25 50 100 150 200 300 400 700 12.5 26 52 104 208 416 833 1660 40 50 60 70 80 90 100 110 #Models Trained 40 50 60 70 80 90 100 110 **#Models Trained** 10 20 30 20 30 10 Sampling Frequency (Hz) **Sensing Window Size** 20 **Sensing Energy (mJ)** 20 100000 **Metric** 80000 80000 8 15 15 Count Count 6 60000 10 10 Global 40000 5 5 20000 2 0 20 30 40 50 60 70 80 90 100 110 10 10 20 30 40 50 60 70 80 90 100 110 4 7 10 13 16 19 19 25 30 35 40 46 5 1 **#Models Trained #Models Trained Kernel Size** # of Channels SMiLe design space exploration

Evolution of various metrics

© ABB

October 4 2022

SMiLe for Edge Analytics

Results for Motor Health Prediction

Our Contributions ...

- ... *SMiLe* for automated optimization of sensing and machine learning Co-Design
- ... optimization based on real-time feedback from Hardware-in-the-loop
- ... validation of *SMiLe* on real-world use case Motor Health Prediction

Our Results show that ...

- ... sensing Hyper-Parameters are important to be optimized alongside ML
- ... SMiLe significantly reduces exploration time and improves exploration results
- ... Hardware-in-the-loop enables direct optimization of energy and latency

Motivation

Impact of SMiLe on Real world use case - Motor Health Prediction

*Real-time motor fault detection by 1-d convolutional neural networks. IEEE Transactions on Industrial Electronics, 63(11), 2016; A deep autoencoder-based CNN framework for bearing fault classification in induction motors. Sensors, 21(24), 2021; Deep Learning & its applications to machine health monitoring. Mechanical Systems & Signal Processing, 115, 2019 October 4 Slide 3 Energy requirements & Latency are minimum when 2022 Sensing & ML, parameters are co-optimized using *SMiL e*

ML Data Processing Pipeline

Frontend – Analysis & Model Development

TVM/OctoML

Figure 5: Overview of the SMiLe machine learning backend

