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Geleitwort der Herausgeber 

(Foreword)

Die Produktionstechnik ist für die Weiterentwicklung unserer Industriegesellschaft 
von zentraler Bedeutung, denn die Leistungsfähigkeit eines Industriebetriebes hängt 
entscheidend von den eingesetzten Produktionsmitteln, den angewandten Produktions-
verfahren und der eingeführten Produktionsorganisation ab. Erst das optimale Zusam-
menspiel von Mensch, Organisation und Technik erlaubt es, alle Potentiale für den 
Unternehmenserfolg auszuschöpfen. 

Um in dem Spannungsfeld Komplexität, Kosten, Zeit und Qualität bestehen zu kön-
nen, müssen Produktionsstrukturen ständig neu überdacht und weiterentwickelt wer-
den. Dabei ist es notwendig, die Komplexität von Produkten, Produktionsabläufen und 
-systemen einerseits zu verringern und andererseits besser zu beherrschen. 

Ziel der Forschungsarbeiten des iwb ist die ständige Verbesserung von Produk-
tentwicklungs- und Planungssystemen, von Herstellverfahren sowie von Produktion-
sanlagen. Betriebsorganisation, Produktions- und Arbeitsstrukturen sowie Systeme zur 
Auftragsabwicklung werden unter besonderer Berücksichtigung mitarbeiterorientierter 
Anforderungen entwickelt. Die dabei notwendige Steigerung des Automatisierungs-
grades darf jedoch nicht zu einer Verfestigung arbeitsteiliger Strukturen führen. 
Fragen der optimalen Einbindung des Menschen in den Produktentstehungsprozess 
spielen deshalb eine sehr wichtige Rolle. 

Die im Rahmen dieser Buchreihe erscheinenden Bände stammen thematisch aus den 
Forschungsbereichen des iwb. Diese reichen von der Entwicklung von Produktionssys-
temen über deren Planung bis hin zu den eingesetzten Technologien in den Bereichen 
Fertigung und Montage. Steuerung und Betrieb von Produktionssystemen, Qualitätssi-
cherung, Verfügbarkeit und Autonomie sind Querschnittsthemen hierfür. In den iwb 
Forschungsberichten werden neue Ergebnisse und Erkenntnisse aus der praxisnahen 
Forschung des iwb veröffentlicht. Diese Buchreihe soll dazu beitragen, den Wissen-
stransfer zwischen dem Hochschulbereich und dem Anwender in der Praxis zu ver-
bessern.

Gunther Reinhart Michael Zäh 
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1.1 Quality and knowledge - The big picture 

1

1 Introduction 

1.1 Quality and knowledge - The big picture  

Quality as a success factor

Quality is a decisive success factor and one of the competitive edges of modern manu-
facturers. In many production scenarios, maintaining high product quality and produc-
tion efficiency entails the extensive use of advanced process monitoring, control and 
adjustment techniques. In this regard, pertaining literature reports that quality related 
costs may run at 20-40% of sales [JURAN & GYRNA 1988, TAGUCHI et al. 1989]. In 
recent decades, researchers and international organizations stressed that the cost of 
quality is not the price of creating a quality product or service. It is the cost of not cre-
ating a quality product or service, hence, more intuitively known as the cost of poor 
quality [BESTERFIELD 1990]. 

Advanced process design and offline fault analysis methods do reduce failure risks 
[WHITNEY 1996]. But, offline methods alone are not enough since any process will 
drift if no control is applied [DEL CASTILLO 2002]. According to ROSS 1995, continu-
ous adjustment, even within tolerance limits, is a must for more competitive products 
that bear minimized losses to the society. The premise that each failure has a root 
cause, causes are preventable, and prevention is cheaper [BESTERFIELD 1990] repre-
sents the underlying motivation for a number of research activities in the field of 
online quality control. Such research initiatives addressed process monitoring 
[ANAGUN 1998, BARGHASH & SANTARISI 2004], fault diagnosis and recovery [BALLÉ

& FUESSEL 2000, BEN-GAL et al. 2003] and their integration [DEL CASTILLO 2002, 
GUH 2003] in order to deal with production disturbances, ranging from minor quality 
nonconformance to complete equipment failure.  

In sharp contrast to research activities, a study of manufacturing priorities in the indus-
trial and the consumer goods sectors (Figure 1.1) shows a rather paradoxical situation 
[A. T. KEARNEY 2005]. Increasing product quality and eliminating defectives are not 
on the top of the priority list when production costs are considered. The finding is 
alerting in the light of the impact of product quality on the overall performance and 
profitability. In spite of the current advances in quality engineering, this key function 
promises yet a greater profit potential in industrial practices if it is assigned more re-
sources.
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Figure 1.1: Impact of manufacturing priorities on cost, revenue and profitability [A.

T. KEARNEY 2005]. All values are relative to the upper left entry marked 

as reference. 

Quality as a shared responsibility

Quality, maintenance and operation personnel, often separate teams, cooperate to solve 
quality problems as quickly and as efficiently as possible. The know-how of the qual-
ity planning team complements the task. Such shared responsibilities and extensive 
experience involved in the fault recovery process have led to the development of com-
puter-aided approaches (CAx) in the three areas to facilitate the interdisciplinary com-
munication and to yield a more efficient production process.  

The nature of quality problems

Generally, if complete failure or equipment stoppage occurs, e. g. due to crash, the 
fault cause is easy to identify and correct. Most original equipment manufacturers 
(OEM) have integrated standard diagnosis functions in their control software. Com-
mercial product data management (PDM) systems offer further assistance in the moni-
toring and diagnosis of production machinery. The situation is different when dealing 
with quality problems of assembled products. In practice, manufacturers install quality 
inspection equipment in order to prevent defective products from reaching the cus-
tomer. However, these systems have limited abilities as to fault identification, diagno-
sis, and recovery. Inferring a fault root cause or a recovery action based on the analysis 
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of a product’s deviation from target quality characteristics depends heavily on the ex-
perience and the know-how of the involved personnel.  

Knowledge as a success factor

Knowledge is regarded as one of the most important issues affecting the success of 
individuals and organizations. The role of knowledge in the industry has been empha-
sized in recent years [OETZMANN 2005, RUDOLF 2007], as companies have become 
more aware of their dependence on qualified staff due to increasing market pressure. 
Knowledge preserving measures, such as knowledge and competence management 
policies or the implementation of expert knowledge-based applications, contribute to 
sustaining and reinforcing the competitiveness of a company [HANNULA et al. 2003]. 
The most valuable asset in knowledge-related practices is by far the human expert who 
represents the ultimate decision-making machine. Figure 1.2 shows a simplified view 
of data processing into knowledge. 

Data

Information

Advice

Decisions

e. g. Management information 
systems

e. g. Knowledge-based systems 

e. g. Human experts

: processing: processing

Figure 1.2: Volume versus value in data processing (after [HARRIS-JONES 1995]) 

1.2 Current situation in operative quality control 

DEL CASTILLO 2002 summarizes the difference between quality control and traditional 
engineering process control (EPC) as given in Table 1.1. He suggests that these two 
apparently opposing viewpoints need to be reconciled and notes that the need exists 
for the increased application of EPC-based techniques for quality control. 
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Table 1.1: Process control versus quality control [DEL CASTILLO 2002] 

Process control Quality control 

Output(s) Process variable(s) Quality characteristic(s) 

Input(s) Process variable(s) Process variable(s) 

Control action Automatic Usually manual 

Considering an arbitrary automated series production process, schematically repre-
sented in Figure 1.3, it can be said that the process control comprises two main tasks: 
data acquisition and control action. Acquisition of process and product data involves 
sensor technology, measurement principles and monitoring techniques. The control 
block handles aspects of data interpretation, reference process behavior, decision logic, 
and feedback of the control action.  

Automated data acquisition has witnessed relatively more advances in recent decades 
than the automation of the control action. There are several reasons why automated 
inline inspection of product specifications has been applied: short reaction time, reduc-
tion of rework and scrap, reduction of logistic costs and high measurement capacity, to 
name a few. The basic disadvantage of inline measurement is the high initial cost. In 
addition, the accessibility of all needed quality criteria is not always guaranteed. Many 
applications allow equipment and process parameters to be monitored as well, such 
that alarms can be automatically signaled when unusual process conditions occur. 
However, this is highly process specific and is not always possible. For example, it is 
not feasible to automatically monitor the condition of fixtures in an assembly line.  

Deducing the control action is more complex. Modern production processes pose chal-
lenging fault diagnosis tasks, which may entail costly scrap and lag until the fault is 
eliminated. Experience plays a significant role in assessing the fault severity; what a 
young engineer, by nature more conservative, considers as scrap might well be rework 
for a more experienced specialist. Moreover, in order to maintain a stable process, it is 
not only important to accumulate experience but to ensure its availability and accessi-
bility also. A parallel factor adding to the difficulty of such diagnostic tasks is the of-
ten encountered lack of documentation since most manufacturers rely on short fault 
description in spreadsheet form. Noteworthy is that recent advances in PDM systems 
and computerized maintenance management systems (CMMS) have improved the 
situation. However, contrary to both acronyms, the focus on operative implementation, 
rather than on management, is still lagging. Specialized CAx tools for troubleshooting 
product quality problems and fault root cause analysis are a rare commodity in practi-
cal applications. 
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Figure 1.3. Control of a production process in a closed-loop representation 

Among the different research directions initiated in response to the unsatisfactory 
situation was the implementation of model-based quality control techniques in analogy 
to conventional EPC paradigms [SACHS et al. 1995, DEL CASTILLO 2002, CARLSON & 
SÖDERBERG 2003]. Also, approaches rooted in the fields of artificial intelligence (AI) 
and knowledge engineering were used for the same purpose. Models for process stabil-
ity analysis, fault diagnosis, decision support and corrective actions were successfully 
built in this way [CHANG & HO 1999, CHEN & HWANG 1992, CAIAZZO et al. 2004]. 
This thesis belongs to the latter category, and addresses the use of AI and knowledge-
based systems (KBS) for quality control in automotive body-in-white production.  

1.3 Problem definition 

Body-in-white (BIW) production is a representative example of a class of complex 
automated manufacturing processes, where the aforementioned situation is witnessed. 
Figure 1.4 illustrates the result of a study conducted by CEGLAREK & SHI 1995 show-
ing that maintenance problems dominate the production phase of the automotive body. 
Of the studied cases, 56% were related to subassemblies, 20% to framing and 2% to 
final assemblies. The remaining 22% were due to panel variations. The relations be-
tween the dimensional variation of the vehicle and its functional performance, as well 
as assembly line failures during production are not very clearly understood [HU 1997, 
CEGLAREK & SHI 1997, CARLSON & SÖDERBERG 2003]. As such, the process of fault 
elimination is highly subjective and vulnerable due to a number of factors that can be 
summarized as follows:  

Monitoring techniques, such as statistical process control (SPC), do not explain 
the root causes of defects [PAN 2002]. 

The employment of pure engineering judgment brings an element of uncertainty 
to the decision making process. 
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Regular employee rotations affect the level of available experience.  

Lacking fault documentation yields inefficient knowledge management.  

The link between planning and operation teams weakens after start of production 
(SOP).

Fault handling is a shared responsibility between maintenance, quality and opera-
tion personnel, which adds organizational costs to the fault recovery process.  

The total losses due to fault diagnosis effort and time are often not fully quanti-
fied and the real costs of a fault are underestimated. 

The process stages are physically similar. 

It is difficult to predict product specifications since no accurate process models 
are available.  

Only end-of-line (EOL) measurements are possible. 

Monitoring all process parameters affecting the geometry, such as positions of 
fixtures, is not feasible.  

BIW production in high-wage countries has developed into a nearly fully automated 
process with integrated inline quality monitoring solutions for 100% inspection, and, 
hence, is well suited for the application of online CAx tools. As detailed later in Chap-
ter 3, a field study conducted at a German automotive manufacturer substantiated the 
necessity of exploiting further improvement potentials in the handling of quality prob-
lems (Figure 1.5).
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Figure 1.4: BIW dimensional fault root cause classification [CEGLAREK & SHI 1995] 
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Figure 1.5: Current fault analysis procedures in BIW represent an improvement po-

tential for the reduction of production costs  

1.4 Objective and approach 

Based on the previous discussion, the objective of this research can be formulated as: 

The KBS aims at aiding the human analyst with tools for quantitative knowledge rep-
resentation that can be annexed to existing monitoring systems. The objective can also 
be seen as an attempt to realize semi-automated closed-loop handling of quality prob-
lems. The term knowledge-based is generally defined by Knowledge-based Systems1 as 
follows.  

“Knowledge-based systems support human decision-making, learning and action. Such 

systems are capable of cooperating with human users and so the quality of support 

given and the manner of its presentation are important issues.”

Throughout the thesis, the focus will remain on the automotive BIW production, as 
described in the problem definition. Data obtained from a field study and recommen-
dations from the literature will be used to identify the solution requirements and to 
design a modular diagnostic system, with a fault knowledge base as its core compo-

1 Knowledge-Based Systems is the international, interdisciplinary and application-oriented journal on KBS.  
<www.sciencedirect.com/science/journal/09507051> 

The development of a knowledge-based system (KBS) for fault diagnosis  
and decision support in online quality control of manufacturing  

processes with the example of body-in-white production 
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nent. The three shaded blocks in Figure 1.6 represent the three basic tasks that will be 
investigated in the course of this research, which are: 

Fault recognition: the detection of abnormalities in the process 

Fault identification: associating an abnormality with a special cause 

Decision: applying or deferring a process adjustment  

The scope of this research does not include the measurement system. Neither will the 
implementation of the corrective action be addressed in the sense of physical manipu-
lation of the process parameters.  

1.5 Thesis structure 

This chapter presented an introduction to the research problem and the objective of the 
thesis. Chapter 2 reviews pertaining literature on process monitoring, fault diagnosis 
and related issues. Previous approaches to integrating fault knowledge databases in 
online control are also presented. Findings from a field study conducted at an automo-
tive production facility are included in Chapter 3. Chapter 4 gives an overview of the 
architecture of the proposed diagnostic system. The development of the system com-
ponents is described in Chapter 5, Chapter 6 and Chapter 7. Chapter 8 illustrates an 
exemplary application scenario and a software prototype of the integrated system. A 
technical and economical assessment of the system is given in Chapter 9. A summary 
and perspectives for further research can be found in Chapter 10. Table 1.2 gives an 
overview of the thesis. 

Process

Measurement Adjustment

Fault identificationFault recognition Decision

Process interface

Figure 1.6: Basic tasks in the fault recovery loop 
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Table 1.2: Overview of the thesis  

Chapter Content 

1 Introduction, problem definition and objective 

2
Review of pertaining literature in order to establish the theoretical need 

for further KBS research in a quality control context  

3
Field study showing the situation in a BIW production facility and es-

tablishing the practical need for alternatives in operative quality control 

4
Overview of the proposed solution consisting of a modular structure of 

specialized submodels 

5
Details of the fault recognition module responsible for triggering alarm 

signals in the case of quality deviations 

6

Details of the fault identification module responsible for determining 

the fault root cause for the quality deviation and providing the user with 

troubleshooting instructions 

7
Details of the decision module responsible for issuing a recommenda-

tion to the user in case immediate process interruption is required 

8 Discussion of the system integration and a software prototype 

9
Discussion of the impact of the proposed system on the overall per-

formance of BIW production in technical and economical terms 

10 Summary and future research directions 
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2 Literature review 

2.1 Overview 

The chapter reviews recent research activities pertaining to the issues of monitoring, 
diagnosis and control of manufacturing processes. The discussion is intended for ap-
plications in the areas of quality control and fault diagnosis. The onset of the chapter 
gives an overview of some definitions related to quality control, fault diagnosis and 
knowledge engineering. These definitions represent the larger context for understand-
ing more specific issues detailed later in the thesis. The section titled process monitor-
ing discusses the aspect of fault recognition in technical processes. A following section 
handles the fault identification task including modeling for diagnosis purposes as well 
as KBS design in process diagnostics. A third section introduces some exemplary di-
agnostic approaches that integrate decision support aspects and closed-loop ap-
proaches in quality control. Finally, the conclusion of the chapter summarizes impor-
tant findings and trends in the surveyed literature.  

2.2 Terms and definitions  

2.2.1 Quality control and fault diagnosis 

DIN EN ISO 9000:2005 defines quality as the degree to which a set of inherent charac-
teristics fulfills requirements. Quality management is explained as the body of coordi-
nated activities to direct and control an organization with respect to quality. Quality 
control is the part of quality management that is focused on fulfilling quality require-
ments. DIN EN ISO 9000:2005 also describes a process as a set of interrelated or in-
teracting activities which transforms inputs into outputs. A product is thus the result of 
a process.

A product that exhibits quality nonconformity is a faulty product. This is explained by 
the definition of a fault as the state of an item characterized by the inability to perform 
a required function [DIN EN 13306:2001]. According to DIN EN 13306:2001, a fault

is a state and is distinguished from failure, which is an event. Failure is defined as the 
termination of the ability of an item to perform a required function, i. e. a permanent 
interruption. A failure (or fault) cause is the reason leading to a failure (or fault). For 
the most part of the thesis, states are more relevant than events, and the term fault will 
be used more often in further discussions relating to quality defects or production dis-
turbances. DIN EN 13306:2001 

A fault may also be defined as an unpermitted deviation of a characteristic(s) of an 
item or a system [ISERMANN & BALLÉ 1997]. Some publications, such as ABU-
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HAMDAN & EL-GIZAWY 1997 and BAYDAR & SAITOU 2001, use the terms error and 
fault interchangeably in the context of assembly processes, which is confusing. ABU-
HAMDAN & EL-GIZAWY 1997 define error propagation as carrying an undetected error 
from a previous task and coupling it with another error during a proceeding task. In 
BAYDAR & SAITOU 2001, the development of a fault pattern is described as an error 
propagation mechanism. Classically, the term error is more often used to describe de-
viations or uncertainties. Hence, the better practice is to adhere to the definition of er-
ror as the deviation between computed or measured values and their true or theoretical 
value [ISERMANN & BALLÉ 1997]. 

Inspection is a check for conformity by measuring, observing, testing or gauging the 
relevant characteristics of an item. Monitoring is a manual or automatic activity in-
tended to observe the actual state of an item. It is distinguished from inspection in that 
it evaluates changes with time [DIN EN 13306:2001]. Fault diagnosis includes actions 
taken for fault recognition, fault localization, and cause identification [DIN EN 
13306:2001]. Fault localization refers to the identification of the faulty item. A diag-
nostic model can be defined as a set of relations which link specific input variables – 
the symptoms – to specific output variables – the faults [SIMANI et al. 2003]. 

It is reported that the terminology in the field of fault diagnosis is not clearly defined 
[ISERMANN & BALLÉ 1997, SIMANI et al. 2003]. For example, quality defects or prod-
uct faults arise due to root causes in the process. However, these root causes represent 
faults as well – process faults. The classification of fault diagnosis methods and tech-
niques is similarly problematic. Most developments and applications of diagnostic sys-
tems rely on combinations of different methods. A sharp categorization of such hybrid 
approaches even to acknowledged standards is difficult and in many cases of little 
practical value [GUTMANN 2005].

The topics handled in the rest of the chapter will be categorized according to the two 
main tasks of fault diagnosis: fault recognition (Section 2.3) and fault identification 
(Section 2.4). The other sections discuss related issues such as process control, deci-
sion support and the human role. The presentation of the topics in this way is more 
suited to the rest of the thesis. The definitions given in Table  2.1 refer to the use of the 
corresponding terms in the scope of this thesis. The given terms conform to the stan-
dards stated above. However, no claim is made on the formality of the definitions at 
this point. The use of the term fault identification in this thesis combines the fault lo-
calization and the root cause identification tasks as given by DIN EN 13306:2001 and 
used in SIMANI et al. 2003. Finally, the use of the term decision refers to the differen-
tiation between immediate and deferred corrective actions upon detecting a fault.  
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Table 2.1: Terms and definitions used in the thesis 

Term Definition 

Fault The instance of one or more quality characteristics exhibiting 

deviation from the specification, regardless of it being an incipi-

ent or an abrupt fault 

Fault pattern The description of the observed deviations in the quality charac-

teristics in vector form  

Fault (root) cause The process parameter responsible for the quality deviation, 

such as a fixture or a robot 

Fault recognition The instance of detecting deviation in the monitored quality char-

acteristics  

Fault (root cause) 

identification 

Establishing an association between a possible root cause and 

the observed fault pattern  

Process General term describing the manufacturing procedures. A proc-

ess is usually multistage. The term may be used to describe a 

single stage or the application of a certain technology in the pro-

duction cycle as well.  

Decision The decision whether to adjust the process immediately after 

fault recognition or to defer the corrective action to a later point 

2.2.2 Knowledge-based systems 

Knowledge, knowledge base and inference

Knowledge is a combination of experiences, values and contextual information that 
may be grouped into explicit and tacit knowledge [DAVENPORT & PRUSAK 1998]. It is 
the source of the expert’s ability to perform. In a similar way, knowledge storage and 
representation is the heart of any expert system (ES) or KBS. It is the function of such 
systems to safestore expert knowledge, to retrieve knowledge from storage and to infer 
new knowledge when required [GONZALEZ & DANKEL 1993, HARRIS-JONES 1995, 
JACKSON 1999].

The components of knowledge [ROLSTON 1988] can be generally viewed as:  

Facts:  true statements relative to the subject domain  
(factual knowledge) 

Procedural rules: invariant rules describing sequences and relations relative to the 
subject domain (procedural knowledge) 
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Heuristic rules: general rules or rules of thumb extracted from relevant experi-
ence suggesting actions, sequences and relations when invariant 
rules are not available (heuristic knowledge) 

In an ES or KBS, the two basic components that act as knowledge containers are the 
knowledge base and the inference engine. In manufacturing processes, the stored 
knowledge is more domain-specific than expressive of generic expert behavior.  

The knowledge base contains factual, procedural and heuristic knowledge. Factual and 
procedural knowledge are that knowledge of the task domain that is widely shared, 
typically found in textbooks or journals, and commonly agreed upon by those knowl-
edgeable in the particular field. Heuristic knowledge is the less rigorous, more experi-
ential, more judgmental knowledge of performance. In contrast to factual knowledge, 
heuristic knowledge is rarely discussed, and is largely individualistic. Thus, knowl-
edge bases consist of some encoding of the domain of expertise for the system. This 
can be in the form of semantic nets, procedural representations, production rules or 
frames [GRIFFIN & LEWIS 1989].

The inference engine is the component with the ability to infer new knowledge from 
existing knowledge using predefined rules and, hence, respond to varying situations or 
inputs. In many cases, there is no sharp boundary between the two components and a 
clear differentiation is not necessary and sometimes not possible. 

Knowledge engineering

Knowledge engineering (Figure 2.1) is the process of acquiring domain-specific 
knowledge and building it into the knowledge base. The knowledge engineer is the 
person who transforms the acquired knowledge in accordance with a knowledge repre-
sentation convention [ROLSTON 1988]. Knowledge acquisition is not a well defined 
process and knowledge may vary from primitive to complex statements and relations 
[JACKSON 1999]. KASABOV 1998 describes four general approaches for knowledge 
representation: statistical methods, symbolic AI rule-based systems, fuzzy systems and 
neural networks (NN). 

Domain expert

Knowledge 
source

Knowledge
engineering Knowledge base

Expert system

Representation
transformation

Figure 2.1: Role of knowledge engineering in ES design and maintenance 
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Expert systems

An ES is a computer program that represents and reasons with knowledge of some 
specialist subject with a view to solving problems or giving advice [JACKSON 1999]. 
ES derive originally from the research discipline of AI and are used to perform a vari-
ety of complicated tasks otherwise performed by highly trained human experts 
[ROLSTON 1988]. The general architecture of an ES is given in Figure 2.2. An ES is 
distinguished from conventional applications in that it simulates human reasoning and 
is capable of storing and retrieving specific knowledge and inferences. Furthermore, it 
solves problems by heuristics and approximate models. An ES also differs from other 
AI applications in its capability to deal with problems of realistic complexity that nor-
mally require a considerable amount of human expertise [JACKSON 1999]. 
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Figure 2.2: Typical ES architecture (after [ROLSTON 1988]) 

Knowledge-based systems

Very often, KBS and AI are mistakenly assumed to be one and the same [GONZALEZ

& DANKEL 1993]. KBS emerged in the 1960s and 1970s as a new branch of AI re-
search (Figure 2.3). It is the branch of AI which has, by far, seen the most success in 
terms of practical implantation. KBS is also sometimes used as a synonym for ES. 
However, strictly speaking the former is more general [JACKSON 1999, COUNCIL FOR 

SCIENCE AND SOCIETY 1989]. A vast number of definitions exist for KBS that have 
developed and changed through the last decades. One recent general definition of KBS 
is “any system that performs a task by applying rules of thumb to a symbolic represen-
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tation of knowledge, instead of mostly algorithmic and mathematical methods

[JACKSON 1999].” GONZALEZ & DANKEL 1993 suggest that a general KBS architec-
ture would consist only of the knowledge base and the inference engine. Figure 2.4
lists general advantages and disadvantages of KBS. 
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Figure 2.3: Developments in computer science and their corresponding engineering 

applications according to DYM & LEVITT 1991 
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Figure 2.4: Advantages and disadvantages of KBS [GONZALEZ & DANKEL 1993] 
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KBS design procedures

The search for a common design methodology for KBS was the concern of many re-
search activities in the past decades. Examples include KADS2 and CommonKADS, 
which probably represent the most widely acknowledged knowledge engineering 
methodology [BORN 1990, SCHREIBER et al. 1994, KINGSTON 1998]. KADS proposes 
several diagram-based models which reflect knowledge from different perspectives 
and at different levels of abstraction as a supporting tool to the knowledge engineer 
[KINGSTON 1998]. MOKA3 represents another example of structured knowledge engi-
neering approaches [BERNARD et al. 2007]. Both KADS and MOKA provide frame-
works for representing and for storing knowledge.  

Nevertheless, in industrial applications, knowledge-based diagnosis of technical sys-
tems still depends mainly on tailored structures. The use of KBS design methodologies 
finds more interest among computer science and programming specialists rather than 
among process and industrial engineers. 

2.3 Process monitoring 

2.3.1 Introduction  

The purpose of monitoring in a production facility is to ensure an optimal and steady 
status of the product and the equipment. Deviations between the desired and the actual 
states of the equipment or the quality of the product are formally known as residuals 
[SIMANI et al. 2003]. The fault diagnosis problem thus consists of two steps: residual 
generation and residual evaluation [BASSEVILLE 2003]. The residual should ideally be 
zero in normal operation conditions. In the BIW dimensional inspection, the residual 
would be the difference between the measured values of the quality characteristics and 
their specified target values. Different residual generation methods are discussed in the 
literature [ISERMANN 1984, ISERMANN & BALLÉ 1997, SIMANI et al. 2003]. Residual 
evaluation starts by the examination of symptoms in order to determine if a change in 
the operating conditions has occurred. The term fault recognition is widely used to 
describe this step since the aim is to recognize abnormalities in process behavior. 

Another related term that evolved with the rise of machine learning and AI research is 
pattern recognition (PR). PR encompasses a wide range of information processing 
problems, from speech recognition and image analysis to fault detection in machinery 
and medical diagnosis [BISHOP 1995]. Such tasks may seem trivial to the human mind, 
but they pose a considerable challenge to modern computers. PR methods include fea-

2 Knowledge-based Systems Analysis and Design Support 
3 Methodology and Tools Oriented to Knowledge Engineering Applications 
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ture extraction, error estimation, cluster analysis and statistical PR. Intelligent PR 
methods have found increasing application in the field of fault recognition in industrial 
environments [BONISSONE et al. 1999]. Their strengths show in the ability to detect 
incipient faults efficiently and their intuitive architectures. It is generally agreed that a 
well-defined and sufficiently constrained recognition problem will lead to a compact 
pattern representation and a simple decision making strategy [JAIN et al. 2000]. 

In the context of quality inspection and control, SPC is probably the most widely used 
tool for residual generation and change detection. Recent developments in monitoring 
strategies have led to increased integration of PR techniques into well established SPC 
schemes. The development is usually referred to as control chart PR [GUH & TAN-

NOCK 1999a, JAIN et al. 2000]. The purpose of the integration is to enhance the ability 
of control charts in detecting out-of-control situations and recognizing patterns of in-
cipient faults. 

2.3.2 Statistical process control 

The control chart was first proposed in 1924 by Shewhart with a view to eliminating 
abnormal variation by distinguishing variations due to assignable causes from common 
cause variation [KUME 1985]. Since then, different types of control charts have been 
developed for various applications [KUME 1985, JURAN & GYRNA 1988, DIETRICH & 
SCHULZE 1999, WOODALL 2000]. The ability to separate out special disturbances (out-
of-control data) from inherent variability (in-control data) makes control charts a pow-
erful tool for SPC applications [GUH & TANNOCK 1999b]. However, even when the 
process is deemed to be out-of-control, no adjustment strategies are explicitly specified 
in the SPC literature [PAN & DEL CASTILLO 2001]. SPC emphasizes monitoring a 
process and assessing whether or not the process has changed. Hence, the scope of 
SPC needs to be broadened to include an understanding of the manufacturing process 
[WOODALL 2000]. This will require more sophisticated modeling and the incorpora-
tion of more engineering knowledge of the process under study. 

A simpler form of control charting is known as precontrol [STEINER 1997]. Precontrol 
does not define control limits as in a traditional control chart. The method is based on 
the specification limits, the range of which is divided into four parts of equal length. 
The middle two parts comprise the green zone. The outer two parts within the specifi-
cation limits comprise the yellow zones and the region outside the specification limits 
corresponds to the red zone. Although it is not a generally valid substitute for control 
charts, LEDOLTER & SWERSEY 1997 identify specific situations in which precontrol 
has value. In industrial applications, precontrol is often favored for practical reasons, 
such as the ease of implementation, absence of assumptions, and reported success. The 
trend towards 100% quality inspection also led to increased use of precontrol. To the 
same end, techniques combining precontrol with conventional control charts have been 
introduced [STEINER 1997, PAN 2007]. 
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Frequently, manufactured items need the values of several different quality character-
istics for an adequate description of their quality [MARTIN et al. 1999]. Univariate 
charts do not take the presence of functional relationships between the variables into 
account and are often implemented together with correlation coefficients [JURAN & 
GYRNA 1988]. If the measured characteristics are not equally important or if they are 
correlated, multivariate SPC may be more sensitive to changes [OGAJA et al. 2002]. 

The beginning of multivariate SPC is marked by the work of Hotelling in 1947 
[HOTELLING 1947]. Hotelling recognized that the quality of a product may depend on 
several correlated characteristics [NIAKI & ABBASI 2005]. He introduced a scalar sta-
tistic, appropriately named Hotelling's T2, that combines information from the variance 
and mean of several variables. Later, the implementation of linear regression analysis, 
principal component analysis (PCA) and partial least squares (PLS) algorithms were 
proven successful for multivariate monitoring [ALT 1984, JACKSON 1985, KRESTA et 
al. 1991, NORVILAS et al. 2000, YIN et al. 2002]. ADAMS 1994 introduced a graphical 
approach to the display, interpretation and construction of multivariate control charts. 
PAN 2007 studies the combination between multivariate analysis and precontrol charts. 

Multivariate charts tend to compress the available data streams and render the interpre-
tation of the out-of-control situation difficult [ALT 1984, JACKSON 1985]. They do not 
possess fault signature properties for diagnosis [YIN et al. 2002]. Fault diagnosis based 
on multivariate charts is feasible if the charted multivariate quantity has physical sig-
nificance [GOULDING et al. 2000]. This problem often discourages practitioners from 
applying these techniques. Also, most multivariate quality control procedures are not 
optimal for shifts that occur in a subset of the process variables [NIAKI & ABBASI

2005]. The use of both univariate and multivariate analyses is often the best, if not the 
only, way to guarantee effective diagnosis of process faults [LOWRY & MONTGOMERY

1995]. Subsequent diagnosis and root cause identification can be implemented by sta-
tistical methods such as clustering, by means of KBS, or by correlation models deter-
mining the process variables that have contributed to the fault and using this informa-
tion with process knowledge to diagnose the fault [NORVILAS et al. 2000].  

2.3.3 Fault pattern recognition for SPC 

In SPC monitoring schemes of single characteristics, the use of run tests, also known 
as zone tests [KUME 1985, JURAN & GYRNA 1988], is a widely accepted technique for 
the recognition of abnormal process behavior. Since operating within the specification 
limits does not necessarily signify a stable process, these rules were devised for out-of-
control situations regardless of operating within or beyond the specification limits.  

Run tests have proven effective in indicating out-of-control situations. Their effective-
ness in interpreting process data is, however, disputed. The major difficulty lies in the 
fact that there is no one-to-one mapping between a supplementary rule and an unnatu-
ral pattern [CHENG 1995]. Unnatural patterns may include shifts in process mean, 
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trends, systematic variations, cycles and mixtures of these patterns (Figure 2.5). Also, 
if a large number of rules is implemented, the result would be an excessive number of 
false alarms without a breach of process control limits. Random noise might contami-
nate the present pattern. Moreover, patterns may sometimes exhibit resemblances. For 
instance, a short trend may be misinterpreted as a shift or vice versa.  

(a) (b) (c)

(d) (e)

Figure 2.5: Examples of unnatural patterns (a) trend, (b) systematic variation, 

(c) cyclic, (d) mixture, (e) sudden shifts [GRANT & LEVENWORTH 1988] 

As such, the analysis of a control chart becomes a PR problem [MONTGOMERY & 
KEATS 1994], i. e. recognizing systematic or unnatural patterns on the control chart. 
Consequently, more recent literature shows an increasing trend towards applying PR 
techniques for diagnostic purposes in the SPC context. 

The best known approaches in PR are: template matching, statistical classification, 
syntactic or structural matching and NN [JAIN et al. 2000]. Template matching is 
rather rigid and would fail if the pattern is distorted or noisy. In syntactic matching, a 
pattern is regarded as a hierarchical structure of simpler sub-patterns. The application 
of syntactic matching is often associated with difficulties in the segmentation of noisy 
patterns, i. e. defining the basic blocks in the pattern hierarchical structure. NN and 
statistical PR methods are for most reported applications implicitly equivalent 
[FUKUNAGA 1990, ANDERSON et al. 1990, RIPLEY 1993, BISHOP 1995]. JAIN et al. 
2000 state that NN offer several advantages such as, unified approaches for feature 
extraction and classification flexible procedures for finding good, moderately nonlin-
ear solutions. The next section discusses NN applications for process monitoring. 
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2.3.4 Neural networks for process monitoring  

A NN is a biologically inspired computational model that consists of parallel process-
ing elements called neurons and connections between them, as well as of training and 
recall algorithms. NN are noise tolerant and learn by examples. In PR applications, 
they offer the ability to model nonlinearities and they require minimal a priori knowl-
edge or model assumptions, besides being adaptive, stable and robust in nature 
[BISHOP 1995, SIMPSON 1990]. The generalization ability of NN is considered to be 
their foremost merit [VELASCO & ROWE 1993]. Generalization refers to the NN pro-
ducing reasonable outputs for inputs not encountered during training. A thorough 
overview of NN classifications can be found in BISHOP 1995, KASABOV 1998 and 
HAYKIN 1999. 

NN have been applied to SPC since the late 1980s. The basic motivation of that trend 
was the attempt to automate SPC chart interpretation. The application of NN to SPC 
has largely focused on univariate control charts [LARPKIATTAWORN 2003]. Several 
researchers have investigated the performance of NN in PR compared to that of tradi-
tional control charts. Mostly, the focus lay on the development of PR systems for uni-
variate quality control charts. Applications in the literature handle the detection of de-
viations in mean and/or variance [CHENG 1995, WANG & CHEN 2002] and the identi-
fication of deviation patterns (unnatural patterns) on control charts [PHAM & OZTEMEL

1994a, GUH 2004].

Under the assumption of independence of the monitored characteristics, NN were 
proven to be an effective approach to control chart PR [HWARNG & HUBELE 1993, 
PHAM & OZTEMEL 1994a, PHAM & OZTEMEL 1994b, CHENG 1995, GUH & HSIEH

1999, GUH & TANNOCK 1999a, GUH 2004, NIAKI & ABBASI 2005]. For example, 
CHENG 1995 developed an NN-based control chart recognizer for mean shifts and 
trends that outperformed Shewhart charts in detecting moderate process changes up to 
3 . COOK & CHIU 1998 demonstrated the ability of NN to accurately identify step 
shifts in magnitude of 1.5  to 2  away from the mean. GUH & HSIEH 1999 and GUH & 
TANNOCK 1999a discuss the identification of pattern parameters, such as shift magni-
tudes and trend slopes. The information may be important for fault diagnosis in some 
applications.  

In multivariate applications, NN models can be a powerful tool for addressing corre-
lated manufacturing processes. Radial basis functions were applied to PLS [ADAMS

1994] and to PCA [WILSON & IRWIN 1998] for nonlinearly correlated data. VAN 

BRACKLE & REYNOLDS 1997 describe cases where multivariate control charts could 
not deliver acceptable performance. Examples where NN outperform conventional and 
time series control charts are found in the literature [COOK et al. 2001, CHIU et al. 
2001, NOOROSSANA et al. 2003, ZOBEL et al. 2004]. Generally, however, fewer NN 
applications in multivariate SPC are reported as compared to univariate approaches 
[MYERS 1990, LARPKIATTAWORN 2003]. 
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The cited applications show that intelligent PR techniques, especially NN, have out-
performed conventional statistical classification methods. These techniques offer fa-
vorable advantages for modeling complex data interdependencies and are a suitable 
platform for integrated univariate and multivariate analysis of product data. The lever-
age of NN is basically due to two major aspects. The first is their ability to detect cor-
relations between subsets of the input signals, which is a problem that received the 
attention of many researchers [KRESTA et al. 1991, CHIU et al. 2001, COOK et al. 2001, 
LARPKIATTAWORN 2003, NOOROSSANA et al. 2003]. The second aspect is the ability 
to model nonlinear relations between the monitored quality characteristics [WILSON & 
IRWIN 1998, GUH & HSIEH 1999, LARPKIATTAWORN 2003]. Up to date, manufacturers 
tend to apply single characteristic charts and linear correlation coefficients, thus failing 
to benefit from the capabilities of more advanced approaches. 

The disadvantages of NN in process monitoring can be summarized in three points. It 
is nearly always necessary to preprocess the data so that only meaningful parameters 
are presented to the network [ANGELI & CHATZINIKOLAOU 2004]. The purpose of the 
preprocessing stage is to minimize the noise and maximize the accuracy of the NN 
computational model. The second limitation compared to other modeling approaches 
is their inability to explain the reasoning since they operate as black boxes using un-
known rules. The third key constraint is the real time execution of neural techniques 
[KRAMER & FJELLHEIM 1996, BISHOP 1995].

The most important factors affecting the performance of NN in PR of unnatural proc-
ess behavior are summarized in Table 2.2 [ZORRIASSATINE & TANNOCK 1998]. These 
factors are explained in Chapter 5.

Table 2.2: Factors affecting NN performance in control chart PR 

Model structure Training procedure 

 Neural network paradigm 

 Type of connection 

 Number of hidden layers 

 Number of neurons 

 Activation function 

 Data preprocessing 

 Number of training patterns 

 Frequency of training cycles 

 Order of training patterns 
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2.4 Model-based diagnostic systems 

2.4.1 Introduction  

According to ASKIN & STANDRIDGE 1993, model building is an art. Science comes 
into play more in the model solution than in the building. The process of model build-
ing iterates between inductive and deductive reasoning. Induction involves deciding on 
the basic system aspects and assumptions using experience and intuition. Deductive 
reasoning describes the identified system components and relationships mathemati-
cally or logically. 

SIMANI et al. 2003 consider fault identification the most important of all fault diagno-
sis tasks and note that it has not gained enough research attention. The core component 
of the diagnostic approach responsible for identification is a model of the considered 
process that may vary from a simple function to a complex multistage or hybrid 
model. The majority of all industrial processes is nonlinear in nature and cannot be 
captured by a single model for all operating conditions. However, most of the existing 
observer-based fault diagnosis schemes are limited to the use of linear models 
[PATTON et al. 2000b]. Worth noting is that most related literature in this field comes 
from the process industry [PERNE & ENDESFELDER 1999]. 

Several classification attempts of diagnosis systems are reported in the literature. 
SIMANI et al. 2003 differentiate between detection and isolation methods and describe 
fuzzy and neural methods as fault diagnosis technique integration. ANGELI & 
CHATZINIKOLAOU 2004 categorize fault diagnosis approaches into numerical, AI-
based and combinations of both. VDI 2888 (1999-12) classifies diagnostic approaches 
into functional, model-based and knowledge-based. Considering published surveys 
[ISERMANN 1984, FRANK 1990, ISERMANN & BALLÉ 1997, SIMANI et al. 2003], there 
is no unique classification of diagnosis techniques. For the purpose of this thesis, it is 
enough to differentiate between quantitative and qualitative approaches in fault mod-
els, with more focus on the latter. 

Quantitative approaches in fault diagnosis are basically signal processing techniques 
employing state and parameter estimation, variable threshold logic, statistical decision 
theory and analytical redundancy methods [ANGELI & CHATZINIKOLAOU 2004]. Ap-
plications relying on analytical redundancy methods are termed quantitative model-
based methods [PATTON & CHEN 1992]. The former approaches are collectively 
known as numerical or functional approaches. BASSEVILLE 2003 presents a good sur-
vey of model-based approaches to fault diagnosis with a focus on linear models of dy-
namic systems. Several other applications of quantitative model-based diagnosis are 
reported in [FRANK 1990, FERREIRO GARCÍA et al. 1999, SIMANI et al. 2003, 
GUTMANN 2005]. The second category of diagnostic techniques includes applications 
involving qualitative knowledge.  
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2.4.2 Model-based diagnosis with qualitative knowledge 

Where valid mathematical models do not exist or access to process variables is limited, 
a number of different methods have been proposed that rely on symbolic, logical or 
linguistic descriptions of system behavior. Such qualitative model-based approaches 
often involve the use of soft computing methods. Soft computing stands for all meth-
ods employing computational intelligence algorithms [BONISSONE et al. 1999, PATTON

et al. 2000b, GOEBEL 2006], e. g. fuzzy logic [DEXTER & BENOUARETS 1997, RAUMA

1997], NN [AYOUBI 1995, MADANI 1999], neuro-fuzzy schemes [ZHANG & MORRIS

1994, RASHIDY et al. 2003] and evolutionary programming [GRASSO et al. 2004, LO et 
al. 2007]. Qualitative approaches in online fault diagnosis offer the advantage of 
avoiding time consuming mathematical modeling [MÉSZÁROS & ROMAN 1997]. But, 
they only offer solutions in cases where highly accurate numerical knowledge is not 
needed.

Many of the reported applications have a hybrid character, where two or more methods 
are combined to yield a more effective diagnosis system. KUO & HUANG 2000 com-
bine SPC, Petri nets and fault trees for failure modeling of a flexible manufacturing 
system. MANDERS 2003 developed a combined statistical detection and qualitative 
fault isolation for identifying abrupt faults in dynamic systems. ZHANG & MORRIS

1994 propose a fuzzy-neural diagnostic system architecture and apply it to a continu-
ous stirred tank reactor. BAYDAR & SAITOU 2001 present a qualitative approach to 
detecting and diagnosing faults in processes where monitoring of production parame-
ters is infeasible. MÉSZÁROS & ROMAN 1997 investigate the differences between ana-
lytical and empirical approaches to qualitative modeling from a computer science 
viewpoint. BALLÉ & FUESSEL 2000, LAKHMI & MARTIN 1998, MATHUR et al. 2001 
and LO et al. 2007 present examples for similar qualitative applications. 

Knowledge-based diagnosis falls under qualitative approaches [ANGELI & CHATZINI-

KOLAOU 2004], where the diagnostic system contains a knowledge base and an infer-
ence engine as defined in Section 2.2.2.

2.4.3 Knowledge-based diagnostic systems  

In his survey of fault diagnosis techniques in dynamic systems, FRANK 1990 states that 
“Logically, there is some potential in using knowledge-based models instead of ana-

lytical models. This is the only way of FDI4 in all such cases where analytical models 

are not available. Therefore, the knowledge-based approach may be looked upon as 

an alternative to the analytical model-based approach, or may complement it.”

4 Fault detection and isolation 
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The KBS paradigm in fault diagnosis often combines quantitative and qualitative 
methods. This combination allows the evaluation of all available information and 
knowledge about the considered process [GUIDA & STEFANINI 1992]. According to 
SIMANI et al. 2003, “a comprehensive approach to fault diagnosis should exploit a 

knowledge-based treatment of all available analytical and heuristic information.”

Recalling the definition of ASKIN & STANDRIDGE 1993 of a model (refer to the previ-
ous section), a knowledge base can be considered a model. In the case of automotive 
BIW dimensional control, a diagnostic knowledge base would be a model relating cer-
tain process instability patterns to their possible root causes. 

Practical needs in the field of diagnosis and process control have accelerated KBS re-
search. Since the early eighties, the manufacturing sector has witnessed considerable 
investments in diagnostic techniques in general, with a traceable trend towards knowl-
edge-based techniques [GUIDA & STEFANINI 1992]. The reason is that these tech-
niques use association, reasoning and decision-making processes as would the human 
brain in solving diagnostic problems. Classical fault detection methods are based on 
limit value checking of important measurable variables, do not allow in-depth fault 
diagnosis and do not simulate human reasoning [ANGELI & CHATZINIKOLAOU 2004].

MYCIN was the first rule-based system developed to diagnose bacterial blood diseases 
in the early 1970s [SHORTLIFFE 1976]. RIEDESEL 1989 discussed the issue of quantita-
tive versus qualitative modeling and the problems inherent to diagnosing multiple 
faults. PRASAD & DAVIS 1993 describe a conceptual framework for knowledge-based 
fault diagnosis in chemical plants. The framework combines predefined information 
processing tasks [CHANDRASEKARAN 1989] that may be knowledge-based or numeric 
in nature. LARSSON 2002 proposes the use of the means-end approach to fault diagno-
sis of a nuclear plant. CUNNINGHAM et al. 1998 present an incremental retrieval 
mechanism for case-based electronic fault diagnosis. RAUMA 1997 discusses the im-
plementation of diagnosis information as meta-rule adaptive fuzzy systems.  

WAGNER 1997 integrated a fault diagnosis system in the control architecture of a CNC 
milling machine. His system relied on a combination of statistical analysis of PLC data 
and a specific-purpose NN. A signal-based quality control loop for technical diagnosis 
is presented in RITSCHEL 1996. The proposed diagnostic approach combines symbolic 
and subsymbolic knowledge representation and is applied to a frequency domain prob-
lem. PATEL et al. 1995 introduced an offline diagnostic application for robotic sys-
tems. His approach permits the diagnostic application to be interfaced to a mainte-
nance management system. He concluded that, although robots possess more robust 
structures, the increased complexity renders it difficult to correctly diagnose the failure 
of robotic systems, especially for a non-expert.  

GUTMANN 2005 presented a knowledge-based diagnosis system for hydraulic ma-
chines incorporating fuzzy inference. In VON EULER-CHELPIN et al. 2006, a model was 
presented for capturing operational knowledge of machining resources with interfaces 
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to theoretical manufacturing system models. An if-then structure for the production 
knowledge was implemented that considers measured parameters, events and runtime 
experiences. Better feedback opportunities of runtime information could be achieved 
through the approach. An application in the process industry is reported in KRÜGER et 
al. 2005 where knowledge modeling for supervision of process facilities is discussed. 

The observation of recent developments in KBS design shows increased tendency to-
wards hybrid approaches in order to produce more effective tools for early and reliable 
fault diagnosis [ISERMANN 1984, ISERMANN & BALLÉ 1997, ANGELI & CHATZINIKO-

LAOU 2004]. For FRANK 1990, such hybrid techniques open a new dimension on fault 
diagnosis for complex processes with incomplete process knowledge. Figure 2.6 illus-
trates a possible architecture of a combined analytical model-based and knowledge-
based real-time diagnosis system. 

Rules/Facts

Experiences

User

Knowledge base

Inference engine

Analytical problem solution Heuristic problem solution

Fault cause

Fault type and size

Explanatory component

Database ExpertDatabase Expert

Process under consideration

Analytical

• Analytical process model

• Observer scheme

• Nominal process behavior

• Fault tree

• Fault statistics

• Process environment

Heuristic

• Residual generation

• Threshold logic

• Hypothesis tests

• Performance index

• Fault recognition

• Fault decision

Figure 2.6: Architecture of a combined analytical model-based and knowledge-

based real-time diagnosis system [FRANK 1990] 
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Although numerous diagnostic KBS applications were developed since their advent, it 
is noted that relatively few research works addressed real industrial needs such as the 
integration of diagnosis and maintenance [MILACIC & MAJSTOROVIC 1987, PATEL et 
al. 1995, JACKSON 1999]. This may be attributed to the fact that not all fault models 
are suited for online implementation due to lacking integration of analytical and quali-
tative knowledge. Also, for some applications, the required online data acquisition and 
sensor scheme may be too expensive. Further KBS applications are listed in published 
survey papers [ISERMANN 1984, XU & LILIEN 1987, RIEDESEL 1989, FRANK 1990, 
ISERMANN & BALLÉ 1997, PATTON et al. 2000a, PATTON et al. 2000b, ANGELI & 
CHATZINIKOLAOU 2004, STEINDERA & SETHIB 2004]. 

2.4.4 Modeling and diagnosis in body-in-white assembly 

Basically driven by the automotive industry, variation simulation and tolerance analy-
sis for assembly has witnessed accelerated progress [DANIEL et al. 1986, JIN & SHI

1999]. Most of the early work conducted in this field follows a form closure approach 
that considers the kinematic relations between component dimensions. However, dur-
ing assembly, component dimensions can change due to clamping and welding forces. 
TAKEZAWA 1980 formally declared that conventional tolerance stackup is not valid for 
automotive body assembly and advocated the application of force closure models. 
While in Europe and Japan, the focus lay on the weld technology and its impact on the 
build process, much work was conducted in North America on variation propagation 
models in multistage manufacturing processes, especially in automotive BIW [HU

1997, CEGLAREK et al. 2001, DING et al. 2004, DING et al. 2005]. Among the ap-
proaches often used for fixture modeling were screw theory and force equilibrium 
equations [JIN & SHI 1999].  

The stream-of-variation theory was introduced for predicting variation in multi-leveled 
manufacturing systems [CEGLAREK & SHI 1995, CEGLAREK & SHI 1997, HU 1997]. 
However, explicit variation models are too complex and impractical. For this reason, 
the use of finite element analysis (FEA) in combination with statistical methods was 
suggested in order to generate accurate models [HU 1997]. A comparison of several 
variation estimators is given in DING et al. 2004. For ill-conditioned assemblies, RONG

et al. 2001 propose a modified least square approach. Finite element and influence co-
efficient methods are implemented to determine the sensitivity matrix in the case study 
described in CAMELIO et al. 2004. DING et al. 2005 investigated the combination of 
product and process variables in the tolerance analysis. CHASE et al. 1996 combined 
models of geometric and dimensional variation in tolerance analysis of mechanical 
assemblies. DING et al. 2002a compared different system level variation models. 
CEGLAREK et al. 2001, VON PRAUN 2003 and LUSTIG et al. 2005 addressed tolerancing 
of non-rigid sheet metal parts. VON PRAUN 2003 differentiates between attributive and 
mathematical representation of geometric variation. Attributive methods, such as data-
driven models or object-oriented models, allow processing tolerance information using 
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a combination of computer-aided design (CAD) systems and stand-alone tolerance 
management software.  

Only a few of the described tolerance models are suitable for diagnostic purposes. For 
BIW diagnosis, only EOL measurements are available, i. e. the only available informa-
tion is the fault pattern. Practically, any mathematical analysis in this case would lead 
to a number of possible fault root causes. It is helpful in such cases to consider addi-
tional factors such as fault severity, fault probability and previous experience in the 
diagnosis procedure.  

Generally, few attempts were made to develop fault diagnosis applications in BIW 
assembly as an extension to the dimensional control process. These efforts are mostly 
concentrated in North American universities and often associated with the state space 
approach. For example, the variation model developed by JIN & SHI 1999 was imple-
mented by DING et al. 2002b for the diagnosis of faults in automotive assembly. Other 
applications include the use of statistical description of variation [JIN & SHI 1999], 
PCA [TSUNG 1999] and hypothesis analysis [ZHOU et al. 2004]. CARLSON & SÖDER-

BERG 2003 implemented numerical approximations to determine locator errors in as-
sembly operations. All these models are of analytical nature that aimed at simulating 
possible fault scenarios in the assembly process. The predefined faults and the result-
ing patterns are thus affected by the quality of the model and the modeling assump-
tions.

Besides the quantitative approaches, a few examples implementing qualitative knowl-
edge were reported. A rule-based diagnosis system for sheet metal assembly was in-
troduced in BAYDAR & SAITOU 2001. An attempt for implementing KBS in fault diag-
nosis of BIW assembly is described in CEGLAREK et al. 1994, where knowledge 
gained in the design stage of the automotive body was used for fault diagnosis during 
the launch phase of the BIW assembly line. Contrary to the viewpoint of SIMANI et al. 
2003 stressing the benefits of integrating heuristics in knowledge-based diagnosis, 
CEGLAREK et al. 1994 implement a pure analytical approach.  

2.5 Integration of diagnosis, decision support and process control  

2.5.1 Introduction 

The use of closed-loop strategies in handling quality problems is advantageous for the 
overall process economics [BLEY et al. 2005]. Process control infrastructure can easily 
be extended to accommodate automated diagnosis algorithms, especially those rooted 
in AI. The need for such a development was acknowledged by many researchers in 
order to cope with more stringent product specifications [DEL CASTILLO 2002]. The 
control architecture of modern processes should be able to react not only in well-
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defined situations, but also to unexpected changes in conditions. One major area of 
promising benefits is that of advisory systems for early fault recognition and identifi-
cation. Fault diagnosis is thus an extension of control that leads to control actions in 
response to faults and can be viewed as a decision-making activity of qualitative na-
ture [PRASAD & DAVIS 1993].

Two issues are addressed next: process control and decision support. The discussion 
serves as an overview of methods and considerations that are necessary for conducting 
a corrective action. The approaches presented next do not explicitly handle the action 
execution aspect. They rather concentrate on defining the corrective action. The scope 
of decision support is restricted to two major considerations in the context of quality 
control: the fault identification certainty and the overall process economics. Finally, 
the human decision-making process as a source of error is briefly discussed. 

2.5.2 Process control 

2.5.2.1 Fault-adaptive control  

Fault-adaptive control or fault-tolerant control involves solving a number of technical 
problems beyond the capabilities of traditional control approaches [KARSAI et al. 
2003]. In addition to the control algorithm, faults must be detected, nominal behavior 
of the plant must be distinguished from faulty behavior and the discrepancies between 
the two must be noted. The fault root cause is identified and the control system is re-
configured in order to accommodate the fault, i. e. change set points, adjust control 
parameters or switch to different controller architectures. Applications of fault-
adaptive control are mostly found in high-risk environments, such as aviation and life 
support systems. Examples include ISOGAI et al. 2000, KARSAI et al. 2001, 
NARASIMHAN 2002, SIMON et al. 2002, XIE et al. 2002, KARSAI et al. 2003, MANDERS

2003 and ABDELWAHED et al. 2005. 

In the context of quality control in multistage manufacturing processes, fault-adaptive 
control is still far from being a reality. Further research is still needed on designing 
suitable feedback control architecture for such complex systems and on implementing 
efficient diagnostic models. The latter aspect, the diagnostic models, does not depend 
on the presence of a controller and thus should receive higher priority. In such situa-
tions, the term process adjustment [DEL CASTILLO 2002] is used rather than control,
since these actions are often not automated. A third helpful research area is that of dis-
tributed sensing, which provides valuable in-process measurements as controller inputs 
[LIU & DING 2005, DING et al. 2006]. Nevertheless, the idea of feedback control based 
on quality inspection was handled in simpler processes. Most reported applications 
refer to SPC-based feedback control or run-by-run process control. 
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2.5.2.2 SPC-based feedback control  

DEL CASTILLO 2002 draws the following comparison between traditional control or 
EPC and quality control. In engineering applications, controllers are usually imple-
mented on commercially available components. In quality control applications, in con-
trast, the operator represents the controller and the feedback mechanism at the same 
time. Solely, neither SPC nor EPC can optimally control a manufacturing process 
[ELSAYED 2000, CHIU et al. 2003]. Practitioners of SPC argue that control actions are 
more likely to increase process variability because of the stochastic nature of manufac-
turing processes. However, by eliminating the option of control actions, SPC excludes 
opportunities for reducing the process output variability [SACHS et al. 1995].

Studies on integrating SPC and EPC report better performance than SPC or EPC alone 
[BOX & KRAMER 1992, DEL CASTILLO 2002, PAN 2002]. Generally, three aspects 
govern their integration, given that EPC is possible: measurement error, adjustment 
cost and sampling [SACHS et al. 1995]. HARDT & SIU 2002 consider three separate 
control loops as a guideline for EPC-SPC integration: equipment loop, material loop 
and process output loop (Figure 2.7). The process industry offers many examples of 
successful EPC-SPC applications [KUMAR 2005] because of the relative accessibility 
of process parameters in this industrial branch. PAN & DEL CASTILLO 2001 compare 
some process adjustment techniques and illustrate the advantage of their integration 
with EPC. Other examples are described in CHIU et al. 2003 and GUH 2003. 

Controller Equipment Material

Equipment loop

Material loop

Process output loop

Reference

signals

Figure 2.7: Three levels of feedback process control [HARDT & SIU 2002] 

2.5.2.3 Run-by-run control 

Run-by-run control monitors process parameters similar to SPC; however, unlike SPC, 
it makes continuous changes to the process in order to compensate drifts in the process 
outputs after every run based on objective functions such as the deviation from the 
target [KUMAR 2005]. The premise for run-by-run approaches is advanced in-situ in-
spection. Run-by-run control models describe the relationship between measurement 
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and process variables. This type of control is sometimes termed model-based control 
[MUSACCHIO 1998]. Compared to conventional SPC, run-by-run control offers in-
creased throughput, reduced operation errors and lower variability [MOYNE et al. 
2000]. SACHS et al. 1995 propose a run-by-run controller with two action modes to 
deal with abrupt and gradual process changes, respectively. HARDT & SIU 2002 apply 
linear run-by-run controllers to a single stage bending process and to an injection 
molding process improving the process capability in both cases. RZEPNIEWSKI & 
HARDT 2003 explored the use of MIMO run-by-run controllers. They conclude that the 
MIMO control case is more sensitive to modeling errors, which are inherent in practi-
cal manufacturing applications. The industry has shown interest in the technique as 
well, especially in the process [KUMAR 2005] and in the semiconductor industries 
[MOYNE et al. 2000]. Figure  2.8 illustrates an example for a run-by-run controller de-
veloped for semiconductor manufacturing.  
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Figure 2.8: Advanced run-by-run process control [STRAATUM GROUP 2002] 

2.5.2.4 Knowledge-based applications for process adjustment  

Recent developments in AI and KBS research have resulted in the application of ad-
vanced diagnosis and process adjustment systems to manufacturing. Such systems are 
capable of instituting necessary adjustment and recovery procedures for minimal proc-
ess interruption. SIMANI et al. 2003 refer to the integration of fault identification and 
process control as a promising future research direction. The knowledge-based process 
adjustment systems used for inline process control have a different decision strategy, 
but require the same input and output information and the same basic technical model 
of the process and the machine as any of the conventional process adjustment tech-
niques [KUMAR 2005].
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A model-based quality control loop for the chemical industry was introduced in PERNE

& ENDESFELDER 1999. NORVILAS et al. 2000 presented an integrated fault detection 
scheme combining multivariate control charts of state variables and a diagnostic assis-
tant for process monitoring and fault diagnosis in a polymerization reactor. According 
to the authors, classical fault diagnosis methods, such as residual based methods, were 
not effective for processes with autocorrelated univariate variables or correlated vari-
ables in multivariate problems. 

The KBS approach was also implemented in quality planning and quality-related fault 
diagnosis. SCHÄFER 2003 presented a concept for process planning making use of a 
database of cause-effect relationships. The concept integrated quality planning, experi-
ence and statistical simulations with the process planning into one framework. The 
application of an ES for the enhancement of dimensional tolerancing and data analysis 
in quality control is reported in HOOKS et al. 1995. WESTKÄMPER 1994 applied ma-
chine learning algorithms towards zero-defect in process chains. A similar application 
is reported in MONOSTORI et al. 1996. Based on the state space approach, 
SCHOENENBERG 2000 presented a diagnostic system for multistage metal cutting op-
erations. MARZOUKI et al. 1991 investigated coupling the electron-beam probing with 
KBS for fault localization purposes in VLSI-circuits5 production. The authors de-
scribed their work as a true progress in process automation compared to previous ap-
proaches, where the diagnosis task is left to the designer.  

EICHHORN 2005 proposed the integration of 3D image processing for in-process qual-
ity control of large surfaces. The concept, which implemented neuro-fuzzy networks 
and statistical analyses, was applied to automotive BIW sheet metal parts. A system 
concept for integrated in-process acquisition and assessment of product characteristics 
and process parameters was presented in MÜLLER 2006. The validity of the concept 
was demonstrated on an automotive BIW station for adhesive application. OETZMANN

2005 discussed the construction of general purpose knowledge bases for production 
networks. His focus lay on measurement (quality inspection) and control (fault diagno-
sis and recovery).  

In summary, KBS was proven successful and effective in dealing with real-life indus-
trial challenges. It is also clear that the potential of KBS extends along the complete 
product life cycle from planning to inline inspection. This adds to the strength of the 
technique as it opens further possibilities for integrating product and process knowl-
edge.

5 Very large scale integrated circuits 
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2.5.3 Decision support issues 

2.5.3.1 Uncertainty  

A capacity of the human mind that challenges any algorithmic approach is the ability 
to classify items into classes whose meaning is well defined but whose boundaries are 
not well defined [ROLSTON 1988, YEN & LANGARI 1999]. To overcome this obstacle, 
a major concern in any application of intelligent systems is to include mechanisms for 
handling uncertainty.  

Three categories of methods for handling uncertainty are often cited in the literature: 
formal probability, certainty factors and fuzzy logic [ROLSTON 1988, KASABOV 1998, 
GOEBEL 2006]. Reasoning based on formal probability, such as the interval of confi-
dence [CARLSON & SÖDERBERG 2003] or Bayesian statistics [GELMAN et al. 2004], is 
a long established approach for quantifying uncertainties. When compared to frequen-
tist statistics, Bayes’ Theorem and, in particular, its emphasis on prior probabilities has 
caused considerable controversy. Proponents describe it as the best known way to deal 
with real-world uncertainties [GOLDSTEIN 2006]. I. J. Good, the leading statistician, 
argues that “the subjectivist (i. e. Bayesian) states his judgments, whereas the objectiv-

ist sweeps them under the carpet by calling assumptions knowledge, and he basks in 

the glorious objectivity of science” [GOOD 1976]. 

A simpler approach to dealing with uncertainty is that of certainty factors [ROLSTON

1988]. A certainty factor is a numerical value expressing the degree of belief in a con-
clusion. A value of 1 would mean total belief and a value of -1 would mean total dis-
belief. One early implementation of certainty factors in ES is reported in MYCIN 
[SHORTLIFFE 1976]. 

The third approach that gained wide acceptance is fuzzy reasoning. Fuzzy reasoning, 
first introduced by L. Zadeh in 1965 [ZADEH 1965], is a powerful tool to handle uncer-
tainty due to incomplete or inexact information. The concept of a fuzzy set corre-
sponds to meaningful classes with blurry boundaries [ROLSTON 1988]. The use of lin-
guistic variables in fuzzy representation is a further advantage. Knowledge expressed 
in linguistic terms is easily comprehensible and transferable, thus resulting in signifi-
cant savings in the design and maintenance costs of a fuzzy logic system. Many suc-
cessful applications have established the technique in the field of diagnosis and control 
[ZIMMERMANN 1991, KOSKO 1992, ZHANG & MORRIS 1994, MENDEL 1995, DUBOIS

et al. 1997, KASABOV 1998, YEN & LANGARI 1999, BALLÉ & FUESSEL 2000, MENZEL

2001, GUTMANN 2005]. The appendix includes a brief account of fuzzy math funda-
mentals.  
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2.5.3.2 Cost of quality (COQ) 

The trade-off between product quality on one side and process adjustment costs on the 
other should be accounted for by the process settings, as it is unreasonable to aim at 
the best quality without bearing the cost factor in mind [HUANG 2001]. The problem is 
a simple fact of the market. All customers demand a product to be as close as possible 
to its nominal specifications, while manufacturers seek the largest possible tolerance to 
reduce the production costs [ROSS 1995]. Cost of quality (COQ) measurement was 
thus driven by the need in the industry for proper consideration of quality related costs 
in financial balance sheets. 

The most common COQ model is the prevention-appraisal-failure model (PAF) intro-
duced by FEIGENBAUM 1956 and MASSER 1957. The optimum cost of quality (PAF 
components only) is shown in Figure 2.9. The figure suggests that fault prevention is 
always more favorable, and that the cost optimum lies as near as possible to product 
perfection [PLUNKETT & DALE 1988]. Another famous cost model is the process cost 
model rooted in the work of Crosby [CROSBY 1979], which includes more intangible 
cost elements than PAF. Other approaches addressed integration with SPC [SON & 
HSU 1991], pictorial representation of COQ elements [CHEN & TANG 1992], and ac-
tivity-based costing [TSAI 1998].

Representative reviews, discussions and application reports of quality cost models 
published in recent years are found in JURAN & GYRNA 1988, PLUNKETT & DALE

1988, BESTERFIELD 1990, ROSS 1995, GOULDEN & RAWLINS 1995, BURGESS 1996, 
KANER 1996, HWANG & ASPINWALL 1996, TSAI 1998, KUMAR et al. 1998, KRISHNAN

et al. 2000 and SCHIFFAUEROVA & THOMSON 2006. 
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Figure 2.9: Optimum in quality costs [JURAN & GYRNA 1988, CAMPANELLA 1990] 
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The mentioned models handle tangible, e. g. material and scrap costs, as well as intan-
gible aspects, e. g. loss of sales or loss of customer’s goodwill. Including such intangi-
ble costs in COQ estimates is controversial. For example, KANER 1996 includes these 
costs and describes them as useful, while CAMPANELLA 1990 does not. JURAN & 
GYRNA 1988 recommend leaving these costs out of the quality balance sheet as the 
controversy over them may jeopardize the whole quality costing effort. In any case, 
these models do not quantify the actual product quality level in their calculations. 

Taguchi’s interpretation of COQ and his introduction of the quality loss function 
(QLF) [TAGUCHI et al. 1989] was a seminal effort linking product quality to quality 
costs. Taguchi’s methodology relates any deviation from the target specification as a 
monetary loss and thus bases operational quality decisions on cost effectiveness 
[PEACE 1993]. His methods have been widely used for process optimization and im-
provement of overall process design and economics. Furthermore, his view paved the 
way for the incorporation of COQ aspects in online process control [TAGUCHI et al. 
1989] and not only in planning and managerial contexts. Taguchi regards process im-
provement to include production parameter improvement, fault diagnosis and process 
adjustment methods with the aim that the total quality loss is minimized [TAGUCHI et 
al. 1989]. 

The implementation of QLF in its original form as suggested by Taguchi models de-
viations of quality characteristics in a quadratic form. Since its advent, several other 
variations to the QLF have been studied, such as asymmetrical loss functions [LI 2002, 
JOSEPH 2004], normalized loss functions [ANTONY 2001] and multivariate QLF 
[ANTONY 2001, CHOU et al. 2002, KO et al. 2005]. Practical applications of the QLF 
are found in NAYEBPOUR & WOODALL 1993, ARAVINDAN et al. 1995, HUANG 2001, 
CHEN et al. 2002, CHEN & CHOU 2004 and TSOU & CHEN 2005. 

Although a large number of case studies of the offline implementation of COQ models 
and Taguchi’s QLF exist, attempts to consider COQ or QLF in online process control 
are seldom [ARAVINDAN et al. 1995, NAYEBPOUR & WOODALL 1993, GUH & 
O'BRIEN 1999]. Generally, the use of economic models in inspection and quality con-
trol practices have attracted theorists only [CHEN & TANG 1992]. ARAVINDAN et al. 
1995 stated that “there is virtually no successful case study in the literature about the 

implementation of Taguchi’s online quality control methods.” The statement still holds 
to date. 

Clearly, the integration of cost aspects in online quality control practices is still lag-
ging in spite of its promise. Further development in this area would be equally helpful 
for run-by-run control applications, in the process industries for example, where the 
control strategy should take the economics of measurement and adjustment into ac-
count [SACHS et al. 1995]. The implementation of a simplified PAF model and quad-
ratic QLF in quality-related decision-making are discussed in Chapter 7.
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2.5.3.3 Human decision-making and error 

The human role in modern manufacturing systems has been the subject of significant 
change. This is attributed to the increased introduction of automated machinery and 
complex IT structures. The role of human operators is currently associated with the 
idea of a supervisory controller [SHERIDAN 1987, DYM & LEVITT 1991].  

In the context of fault diagnosis and recovery, the analysis of human decision-making 
[HATAMURA et al. 2003] and human error [DHILLON 2007] steadily gained importance 
in the industry. PAZ BARROSO & WILSON 2000 regard the human operators as poten-
tial contributors to a disturbance as well as rescuers of the process affected by the dis-
turbance. When acting as rescuers, inappropriate decisions or actions on the part of the 
operators may exacerbate the fault severity and render an eventual recovery action 
more difficult. In their survey, PAZ BARROSO & WILSON 2000 show that 54% of the 
respondent companies find human error as a very important cause of disturbance. 
Studies show that approximately two thirds of the disturbances in industrial environ-
ments are related to human errors [CROSTACK & ELLOUZE 2003] that, apart from lack-
ing process know-how, may arise due to emotional, cognitive, or social effects 
[NACHREINER et al. 2006, DHILLON 2007]. Such effects would manifest themselves 
more in highly automated processes, where an erroneous human action can have dire 
consequences. This notion led to the development of human-oriented automation para-
digms [KRÜGER 2007] that reduce the possibility of human error and alleviate its con-
sequences.

Nevertheless, the human expert remains the most intuitive resource for knowledge 
storage and reproduction, and represents the basis of all operational decisions and ac-
tions. Consequently, the need for objective decision support tools that amend the sub-
jective human nature remains an interesting issue for both researchers and practitioners 
[LACKINGER & NEJDL 1993, DEXTER & BENOUARETS 1997, BAYDAR & SAITOU

2001, CROSTACK & ELLOUZE 2003]. 

2.6 Conclusion 

It was shown that no sharp boundaries exist between the areas of process adjustment, 
quality control, and fault diagnosis and recovery. This is reflected in the literature 
where applications combine several aspects of these areas. Several researchers note the 
inconsistency in the used terminology and refrain from addressing this issue because 
of its little practical value.  

SPC is by far the monitoring practice most widely used in the industry. However, with 
the current advances in inspection systems, it lost its position to 100% sampling 
schemes and distributed sensing. Furthermore, fault recognition in conventional SPC is 
outperformed by modern PR techniques. Among these techniques, NN stand out as a 
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superbly robust and universally valid monitoring approach for real-world applications. 
The advantages of NN over traditional control chart monitoring methods include deal-
ing with subsets of the monitored characteristics and capturing nonlinear multivariate 
relations. An increase in the number of NN applications for process monitoring could 
be observed in the last two decades. The early and effective recognition of unnatural 
patterns in the process behavior can narrow down the search space of the fault root 
cause and significantly accelerate the diagnosis procedure.  

The core of the fault identification task is a model of the considered process. Model-
based diagnosis provides the user with helpful information and directions for the fault 
recovery process. In many situations, however, the complexity of the technical system 
may not be described analytically with sufficient accuracy. In such situations where 
the available information is incomplete or imprecise, soft computing methods and 
knowledge-based diagnosis offer a robust way to overcome those problems. Surveys 
conducted in the past years show that KBS and rule-based reasoning have been very 
successful in fault diagnosis applications. In the automotive sector, relatively few KBS 
applications have been reported and the need for diagnosis systems that accommodate 
nonlinear process models still exists. Another advantage of model-based diagnosis sys-
tems is the good feasibility since no additional hardware is needed. Fault diagnosis 
algorithms can be implemented directly on process control computers.  

The integration of fault diagnosis, quality control and process adjustment is a promis-
ing research direction that can contribute to higher productivity in manufacturing sce-
narios. Related research activities follow a closed-loop line of thinking when handling 
quality issues. The focus areas include the development of in-situ data acquisition 
schemes, the application of linear control algorithms and the incorporation of cost 
functions and optimization techniques. The use of such enhanced product models is 
useful for the overall process economics. KBS approaches are destined for success 
with complex production systems, where no single model can achieve satisfactory con-
trol actions. A combination of submodels supported by a KBS framework represents a 
powerful approach. To the best of the author’s knowledge, no previous research at-
tempted building a KBS for online inspection and fault diagnosis in BIW assembly 
while employing soft computing and integrating design information, heuristics and 
quantitative decision criteria. 
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3 Field study 

3.1 Overview 

The chapter outlines a field study conducted in cooperation with the companies BMW 
AG and Perceptron GmbH.6 The study attempted to stand on current practices in the 
BIW production process and to identify trends and future requirements related to qual-
ity control of BIW products. The assessment of losses incurred in terms of product 
quality deficits, types of faults encountered, and building a representative sample of 
faults for later verification are points that lie in the focus of the chapter. 

The investigated BIW production facility is first described. The economical perform-
ance from a quality control perspective is then analyzed. A following section portrays 
the design, operation and inspection practices in BIW. A short account on the sources 
of variation in the stamping process is presented. The door assembly is closely exam-
ined as it will serve test and validation purposes at a later stage.  

3.2 Description of the investigated production facility 

3.2.1 General information 

The automotive body production facility of the BMW AG factory 6.1 in Regensburg, 
Germany has a staff of approximately 2100 employees and produces approximately 
1000 car bodies per day. The production is highly automated (>95% of the value 
added) and involves 971 welding robots. To finish a 332 kg BMW 1-series body, 5349 
weld spots, 2.3 m weld seam and 41.5 m adhesive seam are needed. On average, a car 
body includes 550 parts which are principally assembled by robots with a small por-
tion of manual activities. The employees, thus, focus more on quality assurance issues 
rather than on the production process.7

Vehicle assembly begins by adding single parts together into subassemblies. Basic 
subassemblies include the underbody, the motor compartment, the rear, the side 
frames, and the roof. These components are assembled into the main body structure. 
Doors, hoods, and deck lids are subassembled separately and added to the body at a 
later stage. Hence, BIW refers to the assembly process of stamped body parts into a 
complete vehicle body. The direct upstream process of BIW is stamping (press shop) 

6 The field study was part of the research project ForWerkzeug-C2 funded by the Bavarian Research Foundation. 
The cooperating industrial partners were BMW Group <www.bmwgroup.com>, KUKA Roboter GmbH 
<www.kuka.com> and Perceptron GmbH <www.perceptron.com>. 
7 Source: <www.bmw-werk-regensburg.de>, accessed on February 1st, 2005 
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and the downstream process is the paint shop. Following the paint shop, the chassis, 
the motor, and the trim (windshields, seats, upholstery, electronics, etc.) are installed. 

3.2.2 Facility performance from a quality control perspective  

The facility produces seven different body models and implements inline product in-
spection in addition to offline measurement stations and a coordinate measurement 
machine (CMM) room. The investigated period included the SOP of two new models.  

The overall equipment effectiveness (OEE) [NAKAJIMA 1988] is the main performance 
metric applied in the factory and is obtained by the multiplication of three ratios:  

Availability ratio: time during which the equipment is actually available for op-
eration divided by planned production time 

Performance ratio: actual production rate divided by maximum capacity 

Quality ratio: quantity of prime grade products divided by total production 

On 28% of the working days in a period of thirty weeks, OEE violations were re-
corded. Table 3.1 gives a breakdown of the latter statistic for four door production 
lines. The unsatisfactory performance was mainly attributed to the availability ratio. 
The relatively long time needed for fault recovery was a major problem, while equip-
ment performance and product quality were acceptable. This coincides with previous 
studies where waiting time was reported to take up to 90% of the total downtime 
[INGEMANSSON & OSCARSSON 2006]. It was found that costs pertaining to scrap, re-
work and adjustment, without consideration of the recovery time and effort, amounts 
to 1-2% of the production budget. Figure 3.1 gives an example of rework time of two 
vehicle models. 
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Figure 3.1: Rework time per produced vehicle for a period of twelve months 
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Table 3.1: OEE violation in four production lines  

Total production 

days considered 
Planned OEE 

Percentage of days where 

OEE was not maintained 

Line 1 150 90% 4.7% 

Line 2 147 90% 8.7% 

Line 3 152 90% 6% 

Line 4 150 90% 12% 

Table 3.2 illustrates the significance of fault analysis costs and proper fault documen-
tation. The table shows a sample, where analysis time was recorded for production 
faults of an underbody assembly line. Clearly, the time invested in fault analysis is 
much higher than that needed for the actual adjustment of the process. Such costs are 
usually regarded as overheads and are left out of any financial balance [TSAI 1998]. 
PLUNKETT & DALE 1988 note that the failure costs would increase drastically com-
pared to appraisal and prevention costs if these overheads were included in the cost 
calculation.

3.3 Vehicle body development process 

3.3.1 Design and planning procedures 

From requirements definition up to SOP, the product goes through a number of phases. 
BIW assembly is regarded as the least flexible in the overall vehicle assembly process 
[SEKINE et al. 1991]. The early planning phase combines available experience from 
previous models with new styling concepts. The process yields a project order and a 
preliminary proof of feasibility in the form of tolerance calculations. 

Remark 1: Considering the observation results, it is clear that a change in 
the way quality related problems are handled is inevitable.  
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Table 3.2: Sample showing fault analysis time versus equipment adjustment time 

(active maintenance time) 

Fault 

case
Category Analysis time Adjustment time 

Ratio of  

analysis time to 

adjustment time 

1 Geometry 1 h 20 min 3 

2 Equipment 2 h 10 min 12 

3
Not  

documented 
7 h 30 min 14 

4 Geometry 1 h 15 min 4 

5 Welding 20 h 2 h 10 

6 Buffer 1 h 10 min 6 

7 Geometry 7 h 30 min 14 

8 Buffer 1 h 15 min 4 

9 Geometry 2 h 1 h 2 

10 Equipment 1 h 30 min 30 min 3 

The concept phase identifies possible assembly schemes in agreement with established 
practices and experience. The gap target values provided from styling teams are then 
implemented to locate risk areas in the assembly operations and release a first dimen-
sional concept of the vehicle, i. e. a first validation of the vehicle tolerance chain com-
patibility. The project then moves into the series development phase. This phase in-
volves exhaustive simulations to assess and modify tolerance chains and risk areas. 
The goal is to develop a feasible tolerance scheme for preassembly tests.  

The next phase is the pilot production, where the build process and tolerance chains 
are verified using hardware setups. Measurement schemes in line with the gap con-
figuration and risk areas are then developed. Subassemblies are checked separately 
using cubings and later assembled into complete vehicles. Based on the observed de-
viations due to part and subassembly faults or due to process faults, the build process 
is revised. The result is an optimized build of the vehicle. Before transferal to opera-
tions, the product goes through the prevolume production phase, which includes pro-
cess capability tests and final adjustments. The launch phase follows and is dominated 
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by activities for variation source identification and reduction. During full production, 
maintenance and quality control tasks are prevalent.  

As early as the concept phase, quality planning personnel are heavily involved in the 
development process. Thorough documentation of the results and intermediate approv-
als are maintained throughout the whole process. However, once the responsibility is 
transferred to the plant for series production, much of the process knowledge gener-
ated in the planning phases loses transparency. Final results, such as CMM measure-
ment plans, are delivered to operation in more detail. But, a few of the operation staff 
gain an overview of the conducted fault root cause analyses, and the contributors to 
geometrical deviations.  

3.3.2 Stamping operations and BIW 

Sheet metal parts assembled in BIW are the product of the upstream stamping process. 
Stamping variation is mostly expressed either as within-run or as run-to-run variation.8

Other expressions for the variation include part-to-part variation, mean-bias deviation, 
and begin-end-of-run variation. The stamping operations in the production facility 
were not part of the field study. According to the experts in the production facility, 
limited success is reported in achieving low variation of stamped parts to design speci-
fications. Recent research results supporting this opinion and describing solutions to 
overcoming the problem are found in ASP 2000a, CEGLAREK et al. 2001, HUANG & 
CEGLAREK 2002 and HOFFMANN et al. 2007. 

Numerous factors affect the dimensional quality of the stamped parts. Steel grade and 
coating, part shape and size, die and press variables are among many factors that make 
the assignment of accurate design tolerances a tedious job. With such difficulties, 
some manufacturers operate presses outside statistical control. In a study by Auto/Steel 
Partnership9 on stamping process variation [ASP 2000a], none of the participating 
manufacturers could successfully maintain a Cpk of 1.33 on all part dimensions using 
the original specifications.10 This is particularly true for larger, less rigid body panels. 
Such parts are difficult to measure since fixtures often overconstrain the part and cause 

8 Within-run refers to variations within the same batch of blanks, while run-to-run variation refers to the  
variation between different batches of blanks. 
9 Further information on Auto/Steel Partnership is found at <www.a-sp.org> 
10 A generally acknowledged standard value for minimum acceptable Cpk by automotive manufacturers 

Remark 2: Much of the information needed for online fault analysis during 
operation is generated during the design and planning phases. 
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mean shifts. Also, rework may correct one particular deviation but adversely affect 
correlated points on the same part.  

In recent years, an innovation of the Japanese industry known as functional build re-
placed the sequential BIW assembly paradigm [ASP 2000b]. Functional build focuses 
on the entire body rather than individual components. Components are evaluated rela-
tive to their mating parts and subsequent processes. Thus, it is tolerable to have larger 
mean shifts in stamped part dimensions, which are compensated for in the assembly.  

In BIW, less rigid parts conform to more stable ones, making it difficult to predict the 
deviations in the final assembly. This explains the low correlation between stamping 
dimensions and assembly dimensions. In addition, assembly processes often distort 
parts during assembly, sometimes closer to and sometimes further away from nominal, 
because of clamping, spot welding, and inconsistencies of part locating schemes. Gen-
erally, assembly operations tend to reduce the mean bias while increasing the variation 
of panels. 

Non-rigid parts build up rigid sub-assemblies, and tighter requirements for mean con-
formance, often normally distributed across an assembly, than those found in stamping 
are necessary [HU 1997]. The reason is the lower likelihood to compensate for out-of-
specification dimensions of more rigid parts. For example, parallelism of feature lines 
of major closure panels after hemming operations is one such critical requirement. 
Moreover, manufacturers may improve the final dimensional quality of the assembly 
by adjusting the weld tools.  

Apart from achieving acceptable dimensional quality, the process should minimize 
residual stresses in the resulting assemblies. The problem becomes relevant in the 
downstream paint shop. Here, thermal effects cause a relief of the residual stresses and 
local distortions of the assemblies. Therefore, most manufacturers install an additional 
geometry inspection stage after the paint process.  

3.3.3 BIW quality control procedures 

Quality control of BIW assemblies comprises the inspection of the product geometry 
and controlling the surface quality. Both are EOL assessments, where no intermediate 
inspection is possible until the subassembly is complete. Product surface inspection is 
a human function conducted by trained line operators. The human eye detects noncon-

Remark 3: BIW assembly offers higher potential for geometrical fault 
compensation, and is generally considered more critical than up-
stream processes. 
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formances, such as scratches, weld splatter and dents, in a more economical and reli-
able manner than an automated system.  

On the contrary, geometrical inspection is a highly automated task, where optical laser 
triangulation sensors are implemented. The inspection strategy and the accessibility of 
the monitored quality characteristics determine the sensor scheme. For 100% inspec-
tion, an inline measurement station would be a good alternative. Inline inspection sys-
tems are implemented for underbody, side apertures and the framing line, for example. 
For other subassemblies, such as doors and hoods, an offline station is installed for 
inspection on a sampling basis. Both types of measurement stations are equipped with 
stationary or robot-mounted sensors or a combination of both. The robot-mounted sen-
sors, also known as flexible measurement systems (FMS), allow the inspection of dif-
ferent subassemblies. For example, the underbody in the case at hand is measured 
100% inline using four robot-mounted sensors. An offline station with one robot is 
dedicated for sampling doors and hoods. Offline geometrical quality control methods 
additionally include CMM and hard gauge fixtures. The advantages of inline meas-
urement systems can be summarizes as follows: 

Quick identification of process instabilities 

Quick reaction to faults and control of corrective action 

Lower risk 

Reduction of the rework costs 

Shorter measurement time with higher capacity 

Automatic measurement documentation  

The one negative aspect of inline measurement is the relatively high initial investment. 
However, the cost development of such systems in recent years exhibited a downward 
trend that is expected to hold in the future. In the investigated facility, inline stations 
were installed for all large body groups of all produced models. A cost analysis in 
some cases even showed that the investment is justified merely by the savings during 
preproduction process capability tests. 

Offline measurement stations offer the advantage of adapting to more than one part 
geometry at relatively lower initial investment. Compared to inline stations, the reac-
tion time is longer because of the sampling strategy. Additional statistical analysis is 
needed in this case, which incorporates higher risk of undetected faults. Logistic costs 
increase since the vehicle or the subassembly has to be moved from the production line 
to the measurement station. The risk of station failure is higher because more produc-
tion lines would be affected. Finally, liability to error increases due to the higher com-
plexity of the measurement task. 
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A real-life example11 illustrates the benefits of automated inline inspection. An inline 
station identified a missing punched hole. At the anticipated point of discovery the 
plant would have produced 625 bodies. To recover from the incident, the plant would 
have incurred 12.5 hours of downtime and 180 man-hours of rework at an estimated 
cost of 795,000 €.  

3.3.4 Fault sources affecting dimensional quality of BIW 

Excluding design errors, detected geometrical deviations in BIW assembly (Figure 
3.2) arise from stamped parts, the assembly process (tooling and fixturing), human 
operation errors and measurement system errors. The effect of such sources on the fi-
nal geometry is usually marked by both univariate and multivariate abnormalities in 
the monitored quality characteristics.  
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Figure 3.2: Sources of geometrical faults in BIW 

11 Courtesy of Perceptron GmbH 

Remark 4: Automated measurement systems and 100% inline product in-
spection are becoming increasingly established quality control 
practices with proven economical and technological advantages. 
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Stamped part variation is not a controllable parameter in the BIW assembly process. 
However, as mentioned previously, it can be compensated for using proper tool and 
fixture adjustment. The BIW assembly line is adjusted for new stamped part batches.  

Observations in the factory show that tooling and fixturing are the main sources of 
detected faults. Over 50% of the documented fault cases could be attributed to these 
two factors. Tooling faults include, for example, robot path deviations, weld gun mis-
alignment, welding tip wear or bolted joints errors. Also, the involved thermal effects, 
e. g. due to induction curing, represent sources of geometrical distortion.  

Fixturing faults occur due to damaged clamps, worn locators or foreign inclusions pre-
venting proper fixturing (e.g. weld splatter). The number of clamp adjustment in-
stances undertaken in one year amounted to 7537, which corresponds to approximately 
18% of the total number of clamps in the facility. Relevant experience from the litera-
ture suggests that fixture failures are a major reason for dimensional variation in auto-
motive bodies [CARLSON & SÖDERBERG 2003]. A similar study by [CEGLAREK & SHI

1995] in the launch phase of an automotive assembly line estimated that 70% of the 
faults were due to fixturing problems. If interferences between handling and fixture 
locators occur, part handling may be a source of geometry deviations as well. As pre-
viously mentioned, the human error may not necessarily be confined to the manual 
manufacturing operations only. It extends to the quality assessment procedure as well. 
Some decisions regarding subassembly acceptance must be made based on experience. 
Factors like experience or mental and physical condition play a role in such a scenario.  

Quality inspection forms another category of fault root causes. Temperature effects on 
sensor casing, lighting, and communication failure are examples of hardware failure of 
the sensor system leading to measurement faults. The measurement system may also 
deliver wrong values due to software failure, such as faulty algorithm parameters, 
short exposure time, deviating coordinate transformation and noise. Embedded diag-
nosis functionalities of the sensor system may be able to indicate some of these faults.  

Excluding measurement faults, the observation of the BIW assembly faults suggests 
that fault root cause analysis is simpler using inline measurements. Mean shifts de-
tected from the inline measurement stations could always be explained by correspond-
ing changes in the process. Avoiding statistical uncertainties in the analysis renders the 
task more reliable. Furthermore, quick reaction to quality nonconformance is a must to 
maintain a stable process and minimize production costs. A seemingly intuitive and 
important notion is that trying to control the process without knowing the source of 
variation often leads to further instability.  

Remark 5: Inline measurement systems simplify fault diagnosis. However, 
they offer no fault analysis capabilities. Quick and reliable fault 
root cause analysis, an experience-exhaustive task, is the only 
guarantee to a stable process. 
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3.4 Door assembly  

3.4.1 Assembly operations sequence 

Although BIW does not formally include doors and hoods, the door assembly is a rep-
resentative example of BIW assembly processes. Similar to all BIW assemblies, the 
door dimensional quality is determined along its history: stamped parts, assembly op-
erations and sequence, hanging strategy and measurement procedures. In addition to 
possible build problems, the quality requirements of a door relate to basic comfort cri-
teria, such as noise, water leakage, and poor fit. 

The production line of a front left door of a passenger vehicle was closely examined. 
The line consists of two areas, a weld or header area and a finish area. The process 
involves sixteen assembly stations (AS) with eight robots and is operated by three 
workers. The daily production target is 700 doors. All fifteen parts of the door are 
shown in Figure 3.3. The figure also shows the assembly scheme of the studied door, 
starting in the upper left corner and ending in the lower right corner of the figure.  

The weld area is where the geometry of the door is primarily defined. It is dominated 
by spot weld operations. The inner door panel (IP) serves as the principal locating 
panel for the assembly. Two geometry stations12 exist in the weld area: AS 1 where the 
IP and the inner panel reinforcement (IPR) are assembled and AS 2 where IP+IPR and 
the outer panel reinforcement (OPR) are assembled. Other respot stations increase the 
rigidity of the subassembly. The finish area starts with the adhesive application on the 
outer panel (OP) and IP+OPR. Marriage between IP and OP takes place just before the 
hemmer. After the induction curing stage and mounting of the door auxiliary brake and 
hinges, the assembly process ends by visual inspection and storage. 

Typical to the weld area, clamps and locators are used for fixturing, grippers for han-
dling, and weld guns or torque-regulated screw drivers for joining. In all studied AS, 
overconstrained fixturing and not the theoretically sufficient 3-2-1 fixturing13 is ap-
plied in order to reduce the variation of non-rigid parts. Stationary and robot-mounted 
welding guns join parts according to the AS layout. Door assembly strategies may dif-
fer from one manufacturer to another. The described sequence is one of several possi-
ble scenarios in the automotive industry. 

12 A geometry station is a station that contributes largely to the geometry in contrast to respot stations. 
13 3-2-1 fixturing is a minimalistic fixturing scheme, where a part is fully constrained by fixing three points on 
the first locating plane, two points on the second and one point on the third, respectively. This is equivalent to 
constraining three translational and three rotational degrees-of-freedom of the part in question. 
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Figure 3.3: Parts and assembly sequence of the studied door 

3.4.2 Door quality assessment 

The key product characteristics of the door geometry are measured as gap and flush 
deviations. Considering the coordinate system in Figure 3.4, the in/out, or Y-axis, is 
the reference direction for flush-related measurements. The up/down, or Z-axis, and 
the fore/aft, or X-axis, refer to the gap between the door and the body.  

Figure 3.4: Body coordinate system 
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Figure 3.5 illustrates the door measurement scheme of the offline FMS. The gray high-
lighted measurement points (MP) are the six features used for visual fixturing of the 
door. Visual fixturing is a technique implemented by optical CMM that uses measured 
features to deduce the reference coordinate system. All other MP are referenced to this 
coordinate system.  
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Figure 3.5: Door measurement scheme 

Table 3.3 lists the MP, their design specifications and the implemented tolerance lev-
els. The reference points are all chosen on the outer panel, as this relates directly to 
comfort criteria like noise and gap. If all MP fall within the specification limits, 
smooth door hanging is guaranteed later. The column actual tolerance refers to the 
values applied at the measurement station. The limits for reference MP are tighter. 
Other characteristics have more relaxed specification limits, where the build process 
and customer satisfaction are not critically affected. 

Figure 3.6 shows the measurement results obtained from the door production line as 
deviations from nominal. Comparing the readings with the target process values in 
Table 3.3, the figure suggests that none of the MP conforms to the process require-
ments. Apparently, the observed mean shifts lead to the conclusion that the process has 
to be stopped and adjusted. This is, however, not true. In fact, the variation is more 
important than the absolute position of the process mean. As long as process adjust-
ments can lead to a stable build, i. e. all MP exhibit an acceptable variation and the 
overall door geometry is valid for the downstream hanging strategy, the absolute mean 
value of single characteristics is of secondary interest. The main focus should be on 
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reducing sudden drifts, shifts and variation within the same process run that distort the 
build.
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Figure 3.6: Measurement sample of four quality characteristics obtained from the 

studied door assembly line 

Nevertheless, Figure 3.6 shows an incipient fault that occurred at cycle 36, where the 
mean values shifted slightly in a correlated manner indicating a special cause varia-
tion. Referring to Figure 3.5, the problem is in the gap between the outer and inner 
panels. The shift increased at a later stage and the process had to be adjusted. This and 
other fault cases are detailed in Chapter 6.

Lacking documentation transparency represented a considerable hindrance while col-
lecting the material for this study. A log book is kept by the quality personnel that de-
scribes adjustment instances of the production line very briefly. The maintenance team 
keeps a similar log book for recording changes in equipment status. Measurement pro-
tocols from the inline measurement stations or the CMM are maintained by metrolo-
gists. To gain full overview of a fault case, one needs to consult all three sources and 
build the link between the detected abnormality in the measured data, the identified 
root cause and the countermeasure. 

Remark 6: Reliable monitoring of quality characteristics and solid process 
knowledge are key factors of efficient fault diagnosis and recov-
ery. 
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Table 3.3: Measurement scheme of the door 

MP 

Design  

specification 

CMM (mm) 

Actual  

specification 

OCMM (mm) 

Actual  

tolerance 

OCMM (mm) 

Axis 
Quality  

characteristic 
Feature 

1 ±2.0 ±1.7 ±1.28 Y Flushness Range 

2 ±0.5 ±0.5 ±0.38 Y Flushness Range 

3 ±0.5 ±0.5 ±0.38 Y Flushness Range 

4 ±2.4 ±1.7 ±1.28 Y Flushness Range 

5 ±0.5 ±0.5 ±0.38 Y Flushness Range 

6 ±0.5 ±0.5 ±0.38 Y Flushness Range 

7 ±0.5 ±0.5 ±0.38 Z Gap (up/down) Range 

8 ±0.2 ±0.15 ±0.11 Y Flushness Range 

9a ±0.6 ±0.6 ±0.45 X Gap (fore/aft) Hole 

9b ±0.6 ±0.6 ±0.45 Z Gap (up/down) Hole 

10 ±1.0 +1.6/-0.4 +1.35/-0.15 Y Flushness Range 

11 ±0.2 ±0.15 ±0.11 Z Gap (up/down) Edge 

12 ±0.5 ±0.5 ±0.38 Y Flushness Range 

13 ±0.2 ±0.15 ±0.11 Z Gap (up/down) Edge 

14 ±0.2 ±0.15 ±0.11 Y Flushness Range 

15a ±0.6 ±0.6 ±0.45 X Gap (fore/aft) Hole 

15b ±0.6 ±0.6 ±0.45 Z Gap (up/down) Hole 

16 ±0.2 ±0.15 ±0.11 X Gap (fore/aft) Edge 

17 ±0.2 ±0.15 ±0.11 Y Flushness Range 

18 ±0.5 ±0.5 ±0.38 Z Gap (up/down) Range 

19 ±0.5 +0.7/-0.3 +0.58/-0.18 Y Flushness Range 
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3.5 Conclusion 

The field study shows that a change in the way quality related problems are handled is 
inevitable. It could also be illustrated that the information needed for online fault 
analysis during operation is mostly generated during the design and planning phases. 
Advanced 100% inline inspection offers a superb source of helpful process data but 
possesses no diagnosis capabilities. Solid fault root cause analysis is an experience-
exhaustive task and the only guarantee to a stable process.  

Comparing the findings of the field study to the conclusion of the literature review 
(Section 2.6), one observes how the industrial needs and the potential of available 
technologies can complement each other. Monitoring techniques can be extended to 
incorporate more advanced recognition algorithms. The human decision making proc-
ess can be aided by tools for information and knowledge handling.  

In addition to process-specific knowledge, the complex problem of fault diagnosis and 
recovery can be compactly described by a reduced number of factors. These factors 
address early recognition of unnatural process behavior, root cause identification and 
the justification of the recovery decision, and can be summarized as follows: 

Is the process stable? 

How can the process instability, if any, be described in terms of the behavior of 
single characteristics and their correlations? 

What is the possible root cause of the detected process instability? 

How accurate is the fault identification? 

How probable is the identified fault? 

When is it economical to adjust the process? 

These six questions will shape the structure of the proposed solution and determine the 
methods described in the upcoming chapters. Further requirements that will be ad-
dressed implicitly include parameter accessibility, system modularity and compatibil-
ity with established standard procedures as well as economic efficiency.  
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4 Overview of the proposed system  

4.1 Proposed system structure 

This chapter serves as an overview of the proposed solution and the system compo-
nents that will be detailed afterwards. It also sheds light on the rationale of the system 
structure based on the results of the literature review and the field study.  

The proposed system, as seen in Figure  4.1, consists of six components in three mod-
ules that accommodate the tasks of fault recognition, fault identification and decision 
on the recovery action (refer to Figure  1.6). The six components must guarantee proper 
representation of the knowledge needed to answer the six questions listed in the con-
clusion of the previous chapter (Section  3.5).  

Measurement Adjustment
Process

Knowledge base

Inference engine

Knowledge base

Inference engine

Fault identification
module

Fault recognition
module

Univariate analysis

Multivariate analysis

Univariate analysis

Multivariate analysis

Decision
module

Probability

Cost

Probability

Cost

Figure 4.1: Components of the proposed system 

The fault recognition module is responsible for process stability assessment. The goal 
is to enhance the early detection capability of existing monitoring systems w.r.t. uni-
variate and multivariate abnormalities. It is proposed to use a neural network (NN) 
approach to build the module as discussed in Chapter  5. 

The fault identification module (Chapter  6) consists of a knowledge base of the prod-
uct faults and an inference engine that compares measured data with modeled fault 
cases and identifies the possible root cause. Thus, it is possible to shorten the fault di-
agnosis time, reduce costs and increase the reliability of the corrective action.  

The decision module (Chapter  7) determines the statistical and economical validity of 
the recovery action at a certain moment. Given that the first two modules signaled and 
identified a fault, the two dedicated decision components determine whether a process 
adjustment should be conducted immediately or deferred to a later point. The a poste-
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riori fault probability according to Bayes’ Theorem is implemented as a measure for 
statistical validation. For process economy considerations, an approach based on the 
QLF is developed.  

4.2 On the rationale of the proposed system structure 

From a knowledge engineering viewpoint, the problem of fault analysis in BIW de-
mands high experience and requires dealing with an abundance of data. Such a case 
can be best handled through hybrid knowledge representation techniques (Figure 4.2)
[KASABOV 1998]. Hybrid methods promise a number of advantages in this regard such 
as combining heuristic and analytical knowledge, modularity, clear hierarchy and in-
herent stability. The proposed system structure can be seen to consist of a KBS core, a 
preprocessor for monitoring and a postprocessor for decision-making. It includes 
lower level elements for recognition, matching and classification as well as higher 
level elements for decision rules and strategic reasoning.  

Any of the methods
Best: Hybrid systems

Theory

Rich

Poor

Poor Rich
Data

Symbolic
AI systems

Genetic
algorithms

Neural
networks

Statistical
methods

Fuzzy
systems

Figure 4.2: Usability of different methods of knowledge engineering and problem-

solving depending on availability of data and expertise (theories) 

[KASABOV 1998] 

For process monitoring, NN offer a number of advantages in statistical inference, such 
as the ability to model nonlinearities, minimal need of a priori knowledge or model 
assumptions, besides being adaptive, stable and robust in nature (refer to Section 
 2.3.4). Combined with 100% inspection, NN technology offers a competitive alterna-
tive to standard threshold-based alarm schemes. To overcome the disadvantages of NN 
as a black box approach, a multi-neural network (MNN) structure will be developed 
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for univariate and multivariate assessment. Input data preprocessing will take place 
through normalization and scaling. No real-time execution problems are expected with 
the BIW production rate. 

Knowledge-based systems (KBS) in multistage manufacturing are promising but yet 
sparingly applied in discrete manufacturing processes as compared to continuous pro-
cesses, such as chemical plants. Mostly all effects in the automotive BIW are nonlin-
ear, which renders the use of simple mathematical superposition for determining the 
process behavior invalid. In addition to the difficulty in modeling BIW assembly proc-
esses, continuous online parameter adjustments increase the effort, and thus the run-
ning costs, of maintaining a complex analytical diagnostic model drastically. KBS 
frameworks are favorable in safestoring analytical and expert knowledge efficiently. 
The 80%-20% rule [KINGSTON 2004] renders the design of KBS in comparison to an 
exact mathematical model extremely economical. The latter rule is a common practice 
in the KBS design. It refers to including 80% of the required knowledge in the KBS 
and leaving 20% to the human expert. This is often not possible for analytical models.  

The knowledge base will be designed in the form of production rules combining proc-
ess heuristics with simulation results of numerical and analytical models. The rule-
based approach has a number of weaknesses such as lack of generality and poor han-
dling of novel situations but it also offers efficiency and effectiveness [ANGELI & 
CHATZINIKOLAOU 2004]. The drawbacks will be addressed through the fuzzy infer-
ence engine and the conflict resolution strategy that attempt to exploit stored knowl-
edge on different diagnosis levels.  

As the considered BIW process does not possess a feedback control architecture, the 
feedback aspect of the proposed solution is basically a decision support task, i. e. the 
operator is provided with suggestions for further actions. The main factors here are the 
fault probability and the process economy that the operator subconsciously considers 
based on his experience. For an online implementation, these factors have to be identi-
fied. The foremost approach to the problem of a posteriori probability is the Bayesian 
statistics. For the process economics part, QLF is the base of all known approaches to 
quantifying product quality on a monetary basis. Both approaches are applied for both 
tasks, respectively. The fault probability component is thus a final uncertainty absorber 
in the system structure, besides the NN in the recognition task and the fuzzy inference 
engine in the identification task. 

4.3 Assumptions  

The running process is assumed to be capable and stable. Fault detection takes place 
before the process departs the tolerance limits, i. e. incipient fault. 100% sampling is 
assumed. Only variable characteristics will be measured, specifically automatically 
measurable nonconforming geometrical quality characteristics. Statistically independ-
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ent nominal-the-best14 features are considered for monitoring. The fault knowledge 
base consists of predefined fault cases and can be extended in offline mode and then 
reimplemented. The presence of multiple simultaneous fault root causes will not be 
considered, since such a case often results in uncorrelated data behavior, and the di-
mension of the identification problem would increase drastically. The assumptions are 
necessary in order to limit the problem complexity. Otherwise, the system require-
ments would be too generic to fulfill, ultimately reducing the effectiveness of the solu-
tion.

The system structure proposed in this chapter will be detailed in the three following 
chapters describing the fault recognition module, the fault identification module, and 
the decision module, respectively.   

14 Nominal-the-best quality characteristics refer to features that are assigned upper and lower tolerance limits, 
such as most geometrical quality characteristics of BIW. In contrast, larger-the-better features are assigned lower 
tolerance limits only (e. g. purity of chemical substances). Similarly, smaller-the-better features are assigned 
upper tolerance limits only (e. g. surface roughness of polished surfaces). 
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5 Fault recognition module 

5.1 Overview 

The goal of this chapter is to develop a generic structure for monitoring multiple prod-
uct quality characteristics. The module focuses on the early recognition of fault pat-
terns in the product. The term early refers to the detection of faults while the process is 
still within the allowed tolerance field. A NN approach is followed for the fault recog-
nition task. The monitoring strategy and the statistical data distribution model are ad-
dressed before presenting the module structure. The NN are iteratively optimized and 
test results are described. Finally, a summary and remarks on the practical implemen-
tation of the module are given. Figure 5.1 shows the two major components of the 
module.  

Process

Measurement Adjustment

Fault identificationFault recognition Decision

Process interface

Univariate analysis

Multivariate analysis

Univariate analysis

Multivariate analysis

Figure 5.1: Components of the fault recognition module 

5.2 Process considerations for network design and training  

5.2.1 Monitoring strategy 

The monitoring strategy applied in the studied production facility is similar to precon-
trol (refer to Section 2.3.2). The tolerance or alarm limit is set to 75% of the specifica-
tion limit for all MP. This is generally true for the door assembly as well as for other 
BIW assemblies. The most common unnatural patterns according to the field study 
were mainly sudden shifts or trends in the process mean that may be accompanied by 
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increased variation. Other patterns, such as systematic or cyclic variation, were only 
occasionally observed. Therefore, the module considers monitoring shifts and trends of 
the quality characteristics only. Both small and large process mean deviations as well 
as correlation analysis have to be addressed.  

In order to generalize the use of the module, absolute measurement values are avoided 
in the training process. The NN training data depends on the standard deviation ( ) of 
the process as a measure of process stability. The amount of deviation from the desired 
target value is expressed in units of . Three categories of deviation are defined as fol-
lows: small ( 1 ), moderate (>1  and 2 ) and large (>2 ). Consequently, a large 
shift is one where the process mean moves suddenly beyond the 2  limit. Similarly, a 
large trend is a trend that moves the process more than 2  away from the desired target 
value within a defined window. According to this definition, a process with Cpk 1.33
that exhibits a small mean shift still lies within the tolerance boundaries. Conse-
quently, if the recognition module is sensitive to deviations less than 1 , fault detec-
tion takes place before the product is rejected, which is the case with the door assem-
bly process. 
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Figure 5.2: Deviation classes w.r.t. standard deviation 

5.2.2 Statistical distribution model of monitored characteristics 

To generate the NN training data, it is necessary to gain knowledge of the statistical 
distribution model of the monitored characteristics. For this purpose, process data was 
tested15 for their actual distribution models and for normality. Three different sample 
sizes were chosen to represent long and short process sequences. Long sequences had 

15 Tests were conducted using the software packages QS-Stat and Matlab. 
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a sample size of 1000. For short sequences, sample sizes of 100 and 50 were tested. 
The longer sequence gives a more true distribution of the considered characteristic. 
The smallest sample size was chosen to represent the typical window size for short-
term process monitoring. The behavior of such small sample sizes is interesting for 
network training since a smaller window size leads to quicker fault recognition. The 
fact remains, however, that smaller sample sizes are associated with greater uncer-
tainty of the distribution model.  

In the conducted tests, the same distribution model for each quality characteristic was 
obtained regardless of the sample size. The distributions varied between Weibull, 
mixed and normal distributions. Two normality tests were applied next. The Shapiro-
Wilk test calculates a statistic that tests whether a random sample comes from a nor-
mal distribution. The higher the value of the test statistic, the closer the expected dis-
tribution is to normality. The test performs very well in comparison studies with other 
goodness-of-fit tests16. It is particularly efficient in checking the tail regions of the dis-
tributions, which are of special interest in quality applications [DIETRICH & SCHULZE

1999, FUKUNAGA 1990, MONTGOMERY 2001].  

The second test is the Lilliefors test or the Lilliefors modification of the Kolmogorov-
Smirnov test. The Kolmogorov-Smirnov test and its Lilliefors modification are sensi-
tive to deviations in the midrange, which are not usually the kinds of deviations that 
lead to inference problems. The Lilliefors test evaluates the hypothesis that a data se-
quence has a normal distribution with unspecified mean and variance, against the al-
ternative that it does not have a normal distribution [FUKUNAGA 1990, MONTGOMERY

2001].

A confidence level of 5% was implemented for both tests. Random sequences were 
obtained from the investigated production line at periods where the process mean was 
stable. The fifteen quality characteristics (Figure 3.5) met the normality requirements 
of both tests for 100% of the tested sequences at sample sizes n=100 and n=50. For a 
sample size of n=1000, a minor fraction of the sequences failed the normality tests. 
Table 5.1 gives an overview of the results.  

Similar studies show that the assumption of normality is a valid approximation in 
geometrical tolerance chains. MANNEWITZ 2004 stated that for a four-element linear 
tolerance chain and more than fifty samples, a normal distribution can be assumed 
with sufficient accuracy. Most tolerance chains in the automotive body fulfill these 
conditions. In a study on quality cost estimation, GUH 2002a and GUH 2002b report 
that if the process is performing well, data non-normality affects the recognition very 
slightly. WHEELER 1995 and HOERL & PALM 1992 take the same position and regard 
the assumption of independence and normality as a welcome generalization in indus-
trial practices. ZORRIASSATINE et al. 2005 argue that, even with expert knowledge of a 

16 Goodness-of-fit tests are statistical tests of the validity of a certain hypothesis without the specification of an 
alternative hypothesis. 
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system, it can be difficult to predict how distribution properties and correlations will 
change when abnormal states start to occur. Based on the presented test results and 
relevant literature, the independence and normal distribution of the training and test 
data will be assumed.  

Table 5.1: Percentage success of normality tests 

Sample size Shapiro-Wilk Lilliefors Both tests 

50 100% 100% 100% 

100 100% 100% 100% 

1000 95% 99% 95% 

5.2.3 Error type I and error type II  

A well designed monitoring technique is one that reconciles effectively between error 
type I and error type II. Error type I refers to identifying in-specification products as 
defects, i. e. false rejection, while error type II refers to defects being identified as in-
specification, i. e. false acceptance. The errors type I and type II are also known as the 
false alarm rate and the escape rate, respectively. The training process will attempt to 
reduce these errors to a minimum.  

Another quantitative measure of this problem is the average run length (ARL). The 
ARL is a widely accepted measure used to evaluate and compare monitoring methods. 
Any sequence of samples that leads to an out-of-control signal is called a run. The 
ARL is defined as the expected number of samples taken until an out-of-control signal 
is issued [DIETRICH & SCHULZE 1999, KUME 1985]. The NN will be trained to gener-
ate signals as quickly as possible if the production process is out-of-control (ideally 
ARL=1) and as late as possible (ideally ARL= ), if the production process is in-
control.

5.2.4 Evaluation criterion 

To evaluate the classification capability of the module components, a classification 
rate is defined as 

%
patternsofnumberTotal

100patternsrecognizedcorrectlyofNumber
ratetionClassifica  (5.1) 

The classification rate depends on the choice of a suitable numerical truth value or a 
threshold. When the output of the NN corresponding to a certain unnatural pattern ex-
ceeds the assigned truth value, the pattern is assumed to exist and an alarm signal is 
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triggered. Thus, the truth value represents a balance between error type I and error 
type II.  

5.3 Module structure  

The proposed module structure shown in Figure 5.3 resulted from preliminary trials to 
fulfill the process requirements discussed in Section 5.2. The module is designed to 
recognize unnatural patterns in univariate data as well as correlations in bivariate man-
ner in two separate stages. Each of the shaded blocks in Figure 5.3 represents a single 
NN with a reference index. For example, NN-123 refers to network 3 in step 2 of stage 
1. Measurement data from all monitored quality characteristics is fed sequentially to 
the module using a multiplexer function. The measured quality characteristics repre-
sent the input to the module. The output of the module includes an assessment of the 
stability of each measured quality characteristic (univariate) as well as the identifica-
tion of correlations between the measured characteristics (multivariate).   

The first stage of the system is a two-step classifier that assigns the input measurement 
data of any arbitrary quality characteristic into one of five categories. The five catego-
ries are normal behavior, upward shift, downward shift, upward trend and downward 
trend. This is repeated for all monitored characteristics using the same network system. 
The first step of the stage is a general-purpose network trained to recognize all five 
deviation patterns. It acts as the main fault pattern classifier. A second classification 
step consists of five special-purpose networks corresponding to the considered devia-
tion patterns. The networks of the second step have a two-fold purpose. Firstly, they 
retest the measurement data for the existence of the unnatural pattern, thus improving 
the classification accuracy. Secondly, the output values of NN-121 to NN-125 are in-
dicators of the deviation magnitudes. 

The second stage is a correlation observer that implements a novel monitoring con-
cept. The results of stage one, and not the original measured data, are compared in 
bivariate manner to detect pattern similarities. The two NN of the second stage catego-
rize the correlation patterns between the measured product characteristics into five dif-
ferent correlation classes to construct a correlation matrix: weak positive, strong posi-
tive, weak negative, strong negative and no correlation. In this way, unnatural behavior 
in subsets of the monitored characteristics can be readily detected. This is advanta-
geous in contrast to many multivariate control charts, where the evaluation is based on 
an overall statistic [NIAKI & ABBASI 2005]. This concept also offers beneficial per-
spectives in dealing with nonlinearly correlated data sequences. 

The proposed structure is a MNN with serial and parallel processing. The use of MNN 
architectures, in contrast to a single network, is the better approach for achieving more 
intelligent behavior [MADANI 1999]. MNN are characterized by enhanced overall 
training efficiency and superior generalization. For example, if only one network is 
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used for the univariate analysis stage instead of six, the network size would be very 
large and training can easily fail due to interferences between the considered patterns. 
Also, by portioning a complex mapping task, such modular architectures tend to find 
representations that are easily interpretable.  

The factors affecting the design of NN systems listed in Table 2.2 are discussed next. 
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Figure 5.3: Structure of the fault recognition module 

5.4 Development of the neural network paradigm 

5.4.1 Network structure 

Since the networks of both stages have similar tasks, they all share the same basic con-
figuration, i. e. the same network architecture, neuron type, and learning algorithm. 
The general attributes of the applied network paradigm are briefly described next. An 
account of neural network fundamentals is also found in the Appendix.  

Multilayer feedforward neural network (MFNN)

The network is a multilayer perceptron network (Figure 5.4) and has only feedforward 
information transmission from the lower neural layers to the higher layers. A feedfor-
ward NN can be regarded as a nonlinear mathematical function which transforms a set 
of input variables into a set of output variables [BISHOP 1994].
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Fully connected neural network

All possible forward connections are existent and possess weights. 

Figure 5.4: Topology of a three-layer MFNN 

Static network

The network is a static neural model in the sense that its input-output relationship may 
be described by a memoryless algebraic nonlinear mapping function. Hence, once the 
network is trained, its outputs are dependant only on the current inputs. 

Three-layer network

GUO & DOOLEY 1992 point out that there is no standard way of determining the num-
ber of hidden layers. In a survey of NN applications [ZORRIASSATINE & TANNOCK

1998], most NN designs depended on trial-and-error to determine the number of hid-
den layers. In many cases three layers were sufficient to model the problem addressed. 
More recently approaches to the fusion of NN with optimization algorithms and other 
technologies, such as genetic algorithms [KASABOV 1998] were discussed. Several 
sources [CYBENKO 1989, HORNIK et al. 1989] recommend that one hidden layer is suf-
ficient to model any complex system with sufficient accuracy. The networks imple-
mented in this module consist of three layers; an input, a hidden and an output layer. 
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Number of neurons per layer

The number of neurons in the input and hidden layers will be determined based on 
simulations. The tests involve real data from the automotive door production line and 
generated data. Determining the number of output neurons of a network is straight 
forward since the number of output classes is known. 

5.4.2 Learning 

Supervised learning

In supervised learning, the networks are trained on a prearranged data set, called train-
ing data set in which each pattern is labeled with its true class label, i. e. input-output 
data pairs are fed to the network during training [HAYKIN 1999]. 

Batch training with random pattern introduction

Batch training refers to updating the network connection weights and biases only after 
all the inputs and targets are presented, i. e. all weight changes are introduced as a sum 
once for every data batch. This type of training is suitable for static NN. It is in most 
cases slower than sequential learning (pattern-by-pattern) but offers a more accurate 
estimate of the error gradient. It also allows for more choices of the training function 
[HAYKIN 1999]. This type of training will be implemented for the developed NN. 

The learning process is maintained on an epoch-by-epoch17 basis until the weights are 
stable and the training error converges to a minimum. The training patterns will be 
randomized from epoch to epoch before being introduced to the networks. The ran-
domization tends to make the search stochastic over the learning cycles and limits the 
possibility of local minima. The strategy also helps in avoiding the phenomenon of 
catastrophic forgetting.18

Backpropagation

The backpropagation (BP) algorithm is the most effective weight updating method of 
MFNN [GUPTA et al. 2003]. Among supervised learning algorithms, BP is probably 
the most widely used for error function evaluation. The original BP algorithm 
[RUMELHART et al. 1986] and its extensions accommodate parallel computational 
structures, can store more patterns than the network inputs and are able to perform 
complex nonlinear mapping. A BP network usually outperforms other network types 

17 An epoch is one complete presentation of the entire training set during the learning process. 
18 Catastrophic forgetting refers to the ability of the NN to forget what it has learned from previous examples, 

when they are no longer presented to it. 



5.4 Development of the neural network paradigm 

67

such as learning vector quantization networks and radial basis function networks in 
classification problems.  

BP generally converges slowly compared to other algorithms. It is, however, simple to 
implement and the recall speed is not affected by the training performance 
[SAGIROGLU et al. 2000]. Successful applications of BP networks for process monitor-
ing are also reported in the literature [PUGH 1991, HWARNG & HUBELE 1993]. The BP 
algorithm will be applied to train all system networks. The appendix gives a mathe-
matical description of the algorithm.  

Faster derivations of the standard BP algorithm fall into two main categories. The first 
depends on heuristics such as applying adaptive learning and including momentum 
constants. The second category depends on the use of standard numerical optimization 
techniques such as the Quasi-Newton methods. Comparison results given in [THE 

MATHWORKS 2007] suggest that for a PR problem of similar order as the one at hand, 
BP with heuristic techniques is the most suited. The applied BP training algorithm will 
include adaptive learning rate adjustment and the use of a momentum constant. 

5.4.3 Activation function 

Activation functions map a neuron’s input domain to a prespecified output range. 
Typical activation functions are shown in Figure 5.5. The sigmoid function, whose 
graph is s-shaped, is by far the most common form of activation functions used in NN 
design. It is defined as “a strictly increasing function that exhibits a graceful balance 

between linear and nonlinear behavior” [HAYKIN 1999].  

The hyperbolic tangent function, which is a smooth sigmoidal nonlinear function, will 
be implemented for the input and hidden layer neurons. It is s-shaped and allows for 
negative values of the activation function. Antisymmetric activation functions tend to 
learn faster than otherwise [HAYKIN 1999]. They are differentiable and, hence, suited 
for the BP learning algorithm. The hyperbolic tangent function is a good tradeoff for 
NN applications, where the processing speed is more important than the exact shape of 
the activation function. For the output layer neurons the logistic sigmoid function with 
output range [0, 1] and the linear function will be compared. Other features of the net-
works will be determined using trial-and-error to achieve better NN performance.  

5.4.4 Training data 

The quality of training and test data is crucial for the performance of the NN. A train-
ing vector in supervised learning consists of two parts: an input pattern and a corre-
sponding output target. The target input part is addressed here, while the target output 
part is discussed in the following sections. The training data is processed in standard 
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Figure 5.5: Typical activation functions (a) linear, (b) ramp, (c) threshold  

(d) hyperbolic tangent sigmoid 

form following a normal distribution N~(0,1). Two types of data were used to con-
struct the input patterns: simulated and real data. In both cases, the output patterns are 
the target network outputs as defined by the desired output classes.  

Simulated input data

Simulated data was generated such that each abnormal pattern consists of an in-control 
mean, a common cause random noise and a deviation representing an assignable cause. 
Input data patterns were generated using the following equation: 

)t(q)t(v)t(m)t(x  (5.2) 

where t is time of sampling, x(t) the normalized value of the quality characteristic at 
time t, m(t) the process mean, and v(t) the common cause variation following a distri-
bution N~(0, ), where  is the process standard deviation. The value of  is normal-
ized to 1, so that v(t) is generated as N~(0, 1). q(t) is the assignable cause disturbance 
at time t. For normal behavior: 

 0)t(q  (5.3) 

For shifts in the process mean: 

 du)t(q  (5.4) 

where u determines the point at which the shift starts (u = 0 before shifting, u=1 after 
shifting) and d the magnitude of the shift in terms of .

For trends: 

 ts)t(q  (5.5) 

where s is the trend slope in terms of . Table 5.2 gives the intervals of the parameters 
d and s in order to generate small, moderate and large deviations as shown in Figure 
5.2. The table assumes =1 and a measurement sequence of thirty-five products (input 
vector size) to calculate the slope value s. Step sizes of 0.6 and 0.02 were implemented 
for mean shifts and trends, respectively.  
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Table 5.2: Parameter intervals for input pattern generation  

Deviation Shifts Trends 

Small d  1  s  0.03 

Moderate 1 < d  2 0.03 < s  0.06 

Large 2 < d  0.06 < s 

Real input data

Process data from the production line described in Chapter 3 was normalized and 
scaled before being introduced to the NN system. The data sequences chosen included 
normal process behavior as well as fault cases, where shifts and trends were observed. 
The procedure is described by the following equation: 

)(E

)(E)t(y
)t(z  (5.6) 

where z(t) is the standardized form of the process data, y(t) is the real process data, 
E(µ) is the expected mean and E( ) is the expected standard deviation.  

This procedure is also intended for the online application of the system. A normaliza-
tion and scaling scheme prior to the actual data analysis by the NN system allows for a 
more flexible adjustment of the specification limits, and stresses the generic character 
of the designed NN system. In practical application, m and  are estimated directly 
from available data samples. 

5.5 Stage 1: Univariate stage 

5.5.1 Step 1: General classifier (NN-11) 

5.5.1.1 Training and test procedures 

An important issue in monitoring applications is the number of neurons in the input 
layer. It corresponds to the length of the process sequence observed, referred to as the 
recognition window size. The size of the recognition window can greatly influence the 
recognition performance of the system. A small window size might result in insuffi-
cient recognition (increased error type I) because the amount of the available process 
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data is not enough to represent all recognition features of the patterns. Meanwhile, a 
large window size could result in longer pattern detection time. In related literature, 
several window sizes ranging from five to sixty are described [GUH & TANNOCK

1999a].

Also, the number of neurons in the hidden layer has a significant effect on the per-
formance of the network [TANG & FISHWICK 1993]. Rules of thumb and systematic 
tests are proposed for determining the number of hidden neurons [HECHT-NIELSEN

1990]. For example, GUPTA et al. 2003 suggest using the number of input data classes 
for this purpose. Using fewer neurons than needed reduces the recognition capability 
of the network. On the other hand, if the hidden layer contains more neurons than nec-
essary, the generalization capability of the NN may be damaged.  

The output of NN-11 determines which of the five patterns exists in the process se-
quence. The five patterns are normal behavior, upward shift, downward shift, upward 
trend and downward trend. Hence, the output layer has five neurons, where each neu-
ron corresponds to a pattern and outputs a value between 0 and 1. An output closer to 1 
indicates a higher matching degree with a specific pattern. An output closer to 0 means 
that a pattern was probably not detected. The target value was reduced from 1 to 0.9 in 
order to prevent output neuron saturation. Table  5.3 gives the target output of the five 
output neurons for the five pattern categories.  

Table 5.4 gives an overview of the implemented training parameters of NN-11. While 
testing the performance of the network w.r.t. a certain parameter, the other parameters 
assumed their assigned default values given in brackets. The default values were arbi-
trarily chosen in the mid-interval of the solution space. 

The training patterns were equally divided among normal process behavior, mean shift 
and trend, respectively. For each of the three cases, 2000 vectors were used for train-
ing and 2000 for testing. According to the data generation scheme described in the 
previous section, the training vectors consisted of 80% simulated data and 20% real 
data. The test vectors had an equal number of simulated and real training patterns. The 
real data portion helps to train the network to deal with noisy input signals. The initial 
network weights and biases were set using asymmetric random initialization.  

The number of training patterns fulfills the Vapnic-Chervonenkis (VC) dimension rule 
[KASABOV 1998]. The VC dimension is a quantitative measure of how many randomly 
chosen training examples are necessary for correct function approximation. For a three 
layer feedforward network with n1, n2 and n3 neurons, respectively, the VC dimension 
is given by the following equation. 

1)1n(
2

n
nndimVC 3

2
21  (5.7) 
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Table 5.3: Output format of NN-11 

Normal 
Upward 

shift 

Downward 

shift 

Upward 

trend 

Downward 

trend 

[0.9, 0, 0, 0, 0] [0, 0.9, 0, 0, 0] [0, 0, 0.9, 0, 0] [0, 0, 0, 0.9, 0] [0, 0, 0, 0, 0.9]

Table 5.4: NN-11 training parameters  

Network parameter Range (default value) 

Range of input signals [-5, 5] 

Number of input neurons 20 to 60 (35) 

Number of hidden neurons 15 to 45 (30) 

Number of output neurons 5  

Input / hidden neurons activation function Hyperbolic tangent sigmoid  

Output neurons activation function Logistic sigmoid or linear (linear) 

Learning algorithm  Gradient descent with momentum and 

adaptive learning rate backpropagation  

Initial learning rate 0.01 

Momentum constant 0.9 

Learning rate increase factor 1.05 

Learning rate decrease factor 0.7 

Maximum performance increase  1.04 

Performance function MSE (mean square error) 

Maximum epoch number 2000 

Training goal  0.02  

Truth value (recognition threshold) 0.2 to 0.7 (0.4) 
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5.5.1.2 Simulation results 

Two criteria were implemented to evaluate and optimize the network structure: the 
residual mean square error (MSE) after the training procedure and the classification 
rate defined in Section 5.2.4. Differences in the recognition results due to the random 
initialization were negligible and did not exceed 1% in all design parameters. The dia-
grams in this section include the best values reached in the course of the simulation. 

Number of input neurons

The number of input neurons represents a compromise between detection time and 
certainty, which are naturally inversely proportional. Based on the results shown in 
Figure 5.6 and Figure 5.7, it is suggested to implement an input window size of forty 
samples. This value should fairly accommodate both time and certainty requirements 
and balance the risk between faulty and delayed data interpretation.  

Number of hidden neurons

With an increasing number of hidden neurons, the final training error exhibited a simi-
lar behavior as that in Figure 5.6 and nearly settled at twenty-five hidden neurons. The 
classification rate was best at twenty and twenty-five neurons. In Figure 5.8, the curve 
indicating the classification rate is typically flat. A lower number of hidden neurons 
does not capture the patterns well enough, while the deterioration at a higher number 
of hidden neurons is explained by overfitting. The phenomenon was especially critical 
at values higher than forty-five neurons. A number of twenty-five hidden neurons will 
thus be implemented. 
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Figure 5.6: Residual error after training w.r.t. the number of input neurons 
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Figure 5.7: Classification rate w.r.t. the number of input neurons 
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Figure 5.8: Classification rate w.r.t. the number of hidden neurons 

Output neurons activation function

Although the network output is limited to [0, 1], numerical results showed that the lin-
ear activation function for the output neurons performed better than the logistic sig-
moid function. The result coincides with previous work [BISHOP 1995, THE MATH-

WORKS 2007], where the linear function was proven superior with regard to output 
neuron saturation problems.  
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Training goal and minimum error

To speed up the training process and limit overfitting effects, a maximum epoch num-
ber of 2000 was implemented. The error curve settled approximately after 600 epochs 
for most cases. The minimum MSE reached was 0.022. 

Truth value 

The tests for the best truth value were conducted using the newly obtained numbers of 
input and hidden neurons, forty and twenty-five, respectively. Based on the results il-
lustrated in Figure 5.9, a truth value of 0.3 was chosen. At higher values the perform-
ance w.r.t. error type I could be improved, while error type II is negatively affected. 
Using values below 0.2 or even neglecting the truth value led in some cases to unac-
ceptable classification results, where common cause variation and process noise were 
more often misinterpreted. 
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Figure 5.9: Classification rate w.r.t. the numerical truth value 

5.5.1.3 Results

The optimized network parameters were tested using 6000 previously unseen test vec-
tors representative of the five considered patterns with different deviation magnitudes. 
The test set contained an equal number of simulated and real data vectors. The pattern 
coding scheme implemented in the test set is given in Table 5.5. The codes refer to the 
desired NN output for the corresponding patterns. Table 5.6 presents the simulation 
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results obtained from simulations, where the average training MSE was 0.029. The 
table can be interpreted as follows. For example, from all test vectors containing up-
ward shift patterns, 92% were identified correctly. For the same pattern 2.6% were 
identified as normal process behavior and thus contribute to the overall error type I. 
The remaining 5.4% were identified as upward trend patterns.  

Table 5.5: Pattern coding 

Code  Pattern Code  Pattern 

10 Normal pattern   

21
Small upward mean shift 

( 1 )
41

Small downward mean shift 

( 1 )

22
Small medium upward mean 

shift (1  < 1.5 )
42

Small medium downward 

mean shift (1  < 1.5 )

23
Large medium upward mean 

shift (1.5  < 2 )
43

Large medium downward 

mean shift (1.5  < 2 )

24
Large upward mean shift  

(2  < )
44

Large downward mean shift  

(2  < )

31
Small upward trend  

( 1 )
51

Small downward trend  

( 1 )

32
Small medium upward trend 

(1  < 1.5 )
52

Small medium downward 

trend (1  < 1.5 )

33
Large medium upward trend 

(1.5  < 2 )
53

Large medium downward 

trend (1.5  < 2 )

34 Large upward trend (2  < ) 54
Large downward trend  

(2  < )
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Table 5.6: Final classification results of NN-11 as percentages of the number of 

test vectors of each fault pattern  

percentage detected as 
Target output 

(pattern code) 
normal

Upward 

shift 

downward 

shift 

Upward 

trend 

downward

trend 

Normal 10 98.5 0.35 0.2 0.4 0.55 

21 10.4 74 0 15.6 0 

22 0 94.8 0 6 0 

23 0 99.2 0 0 0 

24 0 100 0 0 0 

Upward 

shift 

Tot. 2.6 92 0 5.4 0 

31 4.8 0 68.4 0 26.8 

32 0 0 97.2 0 2.8 

33 0 0 100 0 0 

34 0 0 100 0 0 

Down-

ward 

shift 

Tot. 1.2 0 91.4 0 7.4 

41 30 16 0 54 0 

42 0 7.6 0 92.4 0 

43 0 0.4 0 99.6 0 

44 0 0 0 100 0 

Upward 

trend 

Tot. 7.5 6 0 86.5 0

51 25.6 0 9.2 0 66 

52 0 0 3.2 0 96.8 

53 0 0 1.2 0 98.8 

54 0 0 0 0 99.2 

Down-

ward 

trend 

Tot. 6.4 0 3.4 0 90.2 
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Three categories of falsely interpreted data could be identified in the results: error type 
I, error type II and pattern interference. Error type I for the chosen configuration 
reached 1.5% and could be improved if a larger recognition window was implemented. 
On average, error type II among the considered fault patterns was 4.4%. Only errors in 
identifying samples of the lowest deviation magnitude contributed to the latter statistic. 
The third proportion of the falsely interpreted test samples represents pattern interfer-
ences. This effect is not critical for the detection scheme because the deviation ten-
dency (positive or negative direction) is determined correctly, i. e. the correlation 
analysis would still be successful. Furthermore, the interferences were observed in the 
deviations with the lowest magnitude. Once the deviation reaches 1 , the interferences 
decrease rapidly. The test patterns with moderate and large deviations were correctly 
identified at an average classification rate of 98.2%. The rule holds that the smaller the 
deviation from nominal, the lower the classification rate. Figure 5.10 shows the rela-
tion between the deviation magnitude and the classification rate.  

Considering all deviation magnitudes and normal behavior, the overall certainty of 
detection is 91.7%. The result is quite acceptable, as previous investigations that re-
ported higher classification rates involved larger shift magnitudes, reaching up to 7
[PHAM & OZTEMEL 1994a, ZORRIASSATINE & TANNOCK 1998, GUH & TANNOCK

1999b,]. The effect of the numerical truth value can be seen in Table 5.6 as well. Less 
than 1% of the total number of patterns did not cross the 0.3 threshold and were inter-
preted as normal process behavior. All test samples failing to exceed the truth value 
were originally either normal behavior or trend patterns.  

Figure 5.10: Classification rate w.r.t. the deviation magnitude 
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5.5.2 Step 2: Specialized classifiers (NN-121 to NN-125) 

Step 2 networks serve to retest the results of NN-11 as well as to indicate the fault 
magnitude. The same procedure described in Section 5.5.1 was repeated to design the 
specialized NN in step 2. The tests led to network structures of forty, thirty and one 
neurons in the input, hidden and output layers of all five networks, respectively. The 
desired output vector was programmed such that a network outputs 0.9, if its assigned 
pattern is detected, and zero otherwise. The training vectors were modified to include 
double the quantity of large deviation vectors as before. The aim was to enhance the 
capability of the networks to indicate the deviation magnitude in addition to recogniz-
ing it. 

Step 2 networks improved the overall classification rate of the stage to 93.2% as illus-
trated in Table 5.7. The table can be interpreted in the same manner as Table 5.6. Error 
type I could be decreased to 1%. As expected the occurrence of error type II increased 
slightly to 5.2%. Meanwhile, the interference between different classification catego-
ries could be reduced and contributed to the better overall performance. Similar to the 
results of step 1, mostly all of the incorrectly identified patterns belonged to the low 
magnitude deviations.  

Using the five networks as an indicator of the fault magnitude proved efficient for high 
value deviations. However, the networks did not perform as satisfactorily in indicating 
low deviation magnitudes. Noteworthy is that, for an arbitrary fault case in BIW, all 
monitored quality characteristics deviate proportionally according to the fault pattern 
[CEGLAREK & SHI 1995, HU 1997], i. e. it is sufficient to consider the characteristic 
with the maximum deviation as an indicator of the fault severity.  

Table 5.7: Final classification results of stage 1 as percentages of the number of 

test vectors of each fault pattern  

percentage detected as 

Target output 

normal
upward 

shift 

downward 

shift 

upward 

trend 

downward

trend 

Normal 99 0.2 0.05 0.45 0.3 

Upward shift 4.7 92.9 0 2.4 0 

Downward shift 4 0 91.5 0 4.5 

Upward trend 6.2 3.2 0 90.6 0

Downward trend 6.1 0 1.7 0 92.2 
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5.6 Stage 2: Multivariate stage 

The second stage implements a novel concept for multivariate correlation analysis. 
The idea is to break down the task into two parts. The first part is to detect unnatural 
patterns in single characteristics separately, as discussed in stage 1. The second part of 
the task is to compare the identified patterns in a bivariate manner and, hence, estab-
lish the relationship between the measured quality characteristics. NN are capable of 
assessing such behavior tendencies regardless of linearity constraints and offer a wider 
spectrum for applications of multivariate analysis where no exact models are available. 

The analysis implemented in this stage aims at classifying the correlation patterns be-
tween the measured product characteristics into five different correlation classes: 
strong positive, weak positive, strong negative, weak negative and no correlation. The 
NN of the multivariate stage monitor two quality characteristics simultaneously using 
the output of stage 1. Therefore, the number of input neurons in NN-21 and NN-22 is 
double that of the output signals of stage 1, i. e. ten neurons. Based on simulation re-
sults, the number of hidden neurons for both networks was chosen to be twenty. Figure 
5.11 shows the data structure used for training the networks of stage 2. The input part 
of the training vector consists of the output of stage 1 w.r.t. two arbitrary quality char-
acteristics p and q. Each of NN-21 and NN-22 has three output neurons. The first neu-
ron signals no correlation, the second weak correlation and the third strong correlation. 
NN-21 is trained to recognize positive correlations only, while NN-22 is concerned 
with negative correlations. The combined outcome of both networks describes the de-
pendency between characteristics p and q. In the case of conflicting results, the system 
assumes a state of no correlation.  

Using the described training scheme, the overall recognition of correlations in unseen 
test data reached 94.3% on average. Worth noting is that none of the cases with shift-
to-shift correlation were mistakenly identified. The designed networks outperformed 
the classical correlation coefficient in the simulated cases, especially where the devia-
tion magnitudes were low. The correlation coefficient was calculated for the generated 
test samples after adding the noise. Then the calculated and the original correlation 
values were compared. The maximum calculated correlation coefficient value 
achieved for low and moderate shift magnitudes was 0.62. In contrast, the NN deliv-
ered stronger and more reliable indications of the presence of correlations than when 
calculating exact correlation coefficients of the tested cases. 

The proposed NN-based multivariate analysis concept proved to be a robust alternative 
to correlation coefficients. It can be extended without further changes to include other 
patterns of linearly and nonlinearly correlating characteristics.  
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Output of stage 1 for 
quality characteristic p and q

at time t

Desired output of stage 
NN-21 and NN-22 for quality 

characteristics p and q 
at time t

p

Input part

Examples:

No correlation

Strong positive 

q NN-21 NN-22

Output part

Sample training pattern for NN-21 and NN-22:

0 0 0 1 0 0 0 01 0 1 0 0 1 0 0

0 0 0 0 1 0 0 00 1 0 0 1 1 0 0

0 0 0 0 0 0 0 10 1 1 0 0 0 1 0Weak negative 

Figure 5.11: Structure of the training data of stage 2 networks and coding examples 

5.7 Effect of moving recognition window 

With each new product, the recognition window includes the most recent measured 
value and discards the oldest one. The results described up to this point do not consider 
this effect, as the tests consider a stationary data set. However, the fault recognition 
reliability is bound to increase as the system considers consecutive recognition win-
dows. The system is given more than one opportunity to trigger alarm signals if the 
process is unstable, i. e. with each newly produced part having the same fault pattern. 
Most reported applications consider snapshot data when performing diagnostic proce-
dures; however, real-time diagnosis requires successive snapshots of data [PRASAD & 
DAVIS 1993]. The example in Figure 5.12 uses real process data to illustrate the effect. 

The process sequence (unseen test vector) shown in Figure 5.12 was identified as a 
mean shift by the production line operators. The same sequence, when introduced to 
the two-stage classifier, triggers a normal behavior signal starting by window 1 up to 
the twelfth following part. At window 2 and the following recognition windows, the 
system triggers an upward trend signal. Starting at window 3, the system triggers an 
upward shift signal. The identification of the three patterns was consistent for all in-
termediate recognition windows, except for two instances in the upward trend region 
and one instance in the upward shift region. The shift magnitude is marked by the 
thick horizontal lines in the figure. This is a typical fault scenario in BIW assembly 
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and explains how the classification rate should improve greatly when consecutive 
measurements are taken into account.  
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Figure 5.12: Effect of the moving recognition window on detecting a mean shift  

(shown sample is obtained from door production data)  

5.8 Conclusion 

The chapter presented a generic two-stage NN-based recognition module for monitor-
ing production processes. The first stage is a two-step classifier for detecting trends 
and shifts in single quality characteristics. The second stage is a correlation observer 
dealing with the multivariate aspect of the monitoring task. The module receives the 
measured quality characteristics from the quality inspection station. The first task is to 
examine each quality characteristic if it contains unnatural patterns such as mean shifts 
or trends (univariate). Afterwards, the correlations between the quality characteristics 
are identified in a bivariariate manner. If unnatural patterns or correlations are recog-
nized, the module issues an alarm signal. The alarm signals are repeated for each new 
measurement cycle, where process faults are recognized. 

One contribution of the developed module is the consideration of small deviations 
( 1 ). Faults can be readily detected before the process departs the specification 
boundaries in a centered production process with a Cpk of 1.33 or higher. Another con-
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tribution is the combination of univariate and multivariate analysis capabilities and the 
ability to deal with linear and nonlinear relations in subsets of the monitored product 
characteristics. The correlation observer performed well for the BIW example. How-
ever, its dependence on the univariate stage poses some limitations on its applicability 
to other cases. These limitations can be alleviated by including more fault patterns and 
other statistical distribution models to the univariate stage, which is possible using the 
same modular NN system.  

The recognition module was designed to be process neutral and can be applied to a 
wide variety of production scenarios, regardless of the inspection strategy, whether 
100% inspection or on sampling basis. The module can be seen in two perspectives: as 
a stand-alone monitoring tool or as a monitoring module of a comprehensive diagnosis 
system. HAYKIN 1999 comments that, “in practice, neural networks cannot provide 

the solution by working individually. Rather, they need to be integrated into a consis-

tent system engineering approach.” The next chapters describe other components of 
such an integrated system. 
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6 Fault identification module  

6.1 Overview and module structure 

The purpose of the fault identification module is to identify possible fault root causes 
through comparing measured process data with stored knowledge or fault patterns. 
Fault identification is triggered when the fault recognition module signals instabilities 
in the production process. Two major aspects of the KBS architecture will be handled 
in this chapter: the development of a knowledge base and the design of an inference 
engine. Both components make up the fault identification module (Figure 6.1).

Process

Measurement Adjustment

Fault identificationFault recognition Decision

Process interface

Knowledge base

Inference engine

Knowledge base

Inference engine

Figure 6.1: Components of the fault identification module 

Knowledge representation formalizes and organizes available knowledge. One widely 
used technique is the production rule, which consists of an IF part known as the prem-
ise and a THEN part known as the consequent. The IF part lists a set of conditions in a 
given logical combination. If the premise of the rule is satisfied, the rule is said to be 
triggered and the consequent is executed. KBS whose knowledge is represented in rule 
form are called rule-based systems.  

In the knowledge acquisition phase, a combination of simulation results and experi-
ence guided principles are implemented to derive the rule base. The inference engine 
applies fuzzy set theory to trigger consequences or actions according to the input data 
and the rule base structure. Fuzzy set representation is chosen to accommodate uncer-
tainty, partial matching and input data noise. Figure 6.2 shows relevant tasks of the 
KBS that will be discussed next. The chapter concludes with a summary of the main 
results and a note on practical implementation. 
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Knowledge-based system

Inference engine

Pattern matching

Conflict resolution

Action execution

Knowledge reproduction

Knowledge base

Production rules

Knowledge storage and
representation

Figure 6.2: Tasks of the fault identification module in a KBS context 

6.2 Knowledge acquisition  

6.2.1 Procedure  

The knowledge acquisition for BIW fault identification is conducted through general-
purpose as well as case-specific tools that are implemented in BIW assembly design 
and operation phases. Using the door assembly as an example, factors affecting the 
dimensional integrity of the BIW product are included in the knowledge base. Figure 
6.3 gives an overview of the used methods and tools.  

6.2.2 General-purpose tools 

Interviews, experience and documentation

In the course of the field study, several interviews and meetings were conducted with 
the responsible personnel in order to generate the rule base. The interviews had mostly 
a one-on-one character. However, in regular group meetings, one-on-many interviews 
were conducted as well. The interviews followed the basic semi-structured scheme 
[GUBRIUM & HOLSTEIN 2001], i. e. only guidelines for the discussion were prepared. 
Thus, the interviewee had the opportunity to express personal opinions and relate to 
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Figure 6.3: Implemented knowledge acquisition tools 

similar experience where appropriate. This process extended for a year and was con-
ducted on-site. An additional source for general rules was found in pertaining litera-
ture. Several authors addressed fine details and best-practices for modeling BIW as-
sembly [CEGLAREK 1998, MERKLEY 1998, ADCATS 1999, HUANG et al. 2000, 
CEGLAREK et al. 2001, CAMELIO et al. 2003, DING et al. 2004, HUANG & SHI 2004, 
DING et al. 2005]. 

Systematic analysis of available fault reports

The analysis of previous fault cases had a two-fold purpose. The first is to obtain heu-
ristic laws and guidelines for an extended Failure Mode and Effect Analysis (FMEA) 
[HERING et al. 1994, FRANKE 1989] that followed this stage. The second purpose was 
to formulate specific diagnostic rules for the studied production line. The relatively 
low granularity of the fault documentation (Table 6.1) added to the difficulty of the 
knowledge acquisition process.  
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Table 6.1: Typical granularity of BIW fault documentation (source: BMW AG) 

Serial Fault / Troubleshooting Group 
Part 

index 

Operation 

index 
Date 

111
Weld Pts. 39423 and 39425 

adjusted 
TVL-E87 7069625 502A6243 15.4.2005

117 Handling Rob 4R1 substituted TVL-E87 7069625 104A8 … 

165 Side frame St. 3+7 adjusted TVL-E87 7069625 … … 

191 Welding gun 3R1 gap adjusted 

231 Clamps St. 6 beveled 

FMEA

FMEA is a design-evaluation procedure used to identify potential failure modes and 
determine the effect of each on system performance [MOBLEY 1999]. This procedure 
formally documents standard practices, generates historical records and serves as a 
basis for future improvements. The FMEA procedure is a sequence of logical steps, 
starting with the analysis of lower-level subsystems or components. Two types of 
FMEA are highly relevant in manufacturing environments: design-FMEA and process-
FMEA. The design-FMEA is implemented at an earlier stage than the process-FMEA. 
A process-FMEA examines the ways failures in manufacturing and assembly proc-
esses can affect the quality of a product or service.  

FMEA comprises an analytical part and an experiential part. The analytical part de-
termines the fault cause and the effect and relies mostly on qualitative analysis, simu-
lations and process history. The experiential part determines the severity, risk and 
probability of a fault. A common method for collectively expressing these factors is 
the risk priority number (RPN) [FRANKE 1989, MÜLLER 2006]. The RPN is equal to 
the product of the three quantities S, fault severity, O, fault likelihood, and D, fault 
detectability, each estimated on a scale of ten (Equation 6.1). 

DOSRPN  (6.1) 
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Fault tree analysis/Event tree Analysis (FTA/ETA)

FTA is a top-down technique for assessing the way in which several failures can cause 
a single outcome or a system failure [BAYDAR & SAITOU 2001]. It is different from 
FMEA in that it is restricted to identifying system elements and events that lead to one 
particular undesired event. ETA is a forward technique, which may be used to examine 
the propagation of an initiating event with the presence of a number of other events, 
faults or conditions. FTA and ETA may be applied during the design stage of the as-
sembly system in order to predict possible propagated failure situations [BAYDAR & 
SAITOU 2001]. Thus, they provide an objective basis for justifying system changes, 
performing trade-off studies and demonstrating compliance with safety and environ-
ment requirements. The analogy between the build sequence of the assembly process 
and the FTA is established in the next section and is used later to construct the rule 
hierarchy. 

6.2.3 Case-specific tools 

Hierarchical representation and diagnosability levels of the assembly process 

An intuitive way to capture fault knowledge in assembly is to use a hierarchical repre-
sentation of the assembly process. In many cases such a representation is equivalent to 
the assembly precedence graph. Using the door assembly as an example, the tree-
shaped hierarchy in Figure 6.4 represents the build sequence. The hierarchical repre-
sentation is helpful since it offers a unified framework for representing knowledge of 
different fault types: assembly fixture related, welding gun related, stamped part re-
lated and material handling related. Clusters of fault sources can be assigned to each 
assembly operation in any of the hierarchy levels. The hierarchy also reflects a possi-
ble structure of the rule base, where the rules can be categorized into levels analogous 
to those of the assembly sequence. For example, in Figure 6.4 the fault specification 
level generally increases moving top down.  

Another critical notion in this context is that of diagnosability. If there is one and only 
one root cause for any given fault, the assembly is called fully diagnosable. Otherwise, 
the assembly is non-diagnosable [DANAI & CHIN 1991]. HU 1997 concludes that in 
order to achieve full diagnosability in serial assembly, the number of measurement 
points must be equal to or higher than the number of variation sources. He further 
states that parallel assemblies are not fully diagnosable no matter how many measure-
ment points are used. One common practice is to differentiate between station-wise 
and element-wise diagnosability, as suggested by CARLSON & SÖDERBERG 2003 and 
DING et al. 2002c. An example in DING et al. 2002c shows that in-process sensing in-
volving fewer measurement points is generally capable of higher diagnosability than 
EOL sensing in multistation manufacturing processes. The disadvantage, however, is 
the technical and economic feasibility of the additional measurement stations.  
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Figure 6.4: Hierarchical levels of the door assembly (after [CEGLAREK & SHI 1995]) 

Tolerance analysis

Modern practices in tolerance analysis expand the standard definition of tolerancing, 
which bounded error contributors to product variables only, to explicitly include proc-
ess variables [DING et al. 2005]. In the same line, the concept of process interchange-
ability replaces gradually the conventionally implemented part interchangeability. 
Figure 6.5 illustrates the effect of a locator (process parameter) dimensional error on 
the part quality.  

The results of statistical tolerance analyses from the design phase of the vehicle were 
studied in order to document the tendencies of the quality deviations (fault patterns) 
associated with certain root causes, and not the exact calculation of tolerance chains. 
Further information regarding the process interchangeability could also be generated 
for rigid panels using CAD and for non-rigid panels using FEA. 

L ±

Locator profile as a 
process variable and 
part of the tolerance 
chain in a machining 
process

Locator error

Nominal 
surface Actual 

surface

Figure 6.5: The effect of process variables on product quality [Ding et al. 2005] 
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CAD as a simulation tool for rigid body fixturing errors

In the cases where the assembled parts can be considered rigid, simple simulations can 
be conducted in the CAD environment to determine the fault effect quantitatively. The 
technique is straight forward and can be mathematically described through basic trigo-
nometry. It can be seen as a simplified form of the tolerance analysis. Such an analysis 
considers the sheet metal parts and the process features at the same time. However, 
non-rigid parts are assembled in 37% of the BIW stations [SHIU et al. 1997]. In such 
situations, qualitative results can be reached. The simulation is similar to the rigid 
body movement due to the locator error in Figure 6.5.

Numerical modeling using finite element analysis (FEA)

Numerical methods using FEA can be used to develop variation simulation models for 
deformable sheet metal parts with complex 3D free form surfaces [LIU 1995]. Re-
cently, sensitivity analysis techniques, e. g. the influence coefficients method, replaced 
the time consuming Monte Carlo simulations in FEA fault modeling. Other approaches 
suggest applying PCA additionally to limit the search space [CAMELIO et al. 2004]. 
Using FEA, it is possible to address issues of spring back and part deformation and 
their effects on the assembly dimensional integrity [LIU & HU 1997].  

The level of detail of the FEA is a matter of concern. On one hand, it should be as low 
as possible for an economic design of the KBS. On the other hand it should capture the 
modeled faults with sufficient accuracy. For the intended KBS application, the FEA 
results should deliver the correct tendencies of the fault pattern, but an exact estima-
tion of the deformations is not required. An example illustrating the use of simplified 
boundary conditions is given in Section 6.2.4.2. Recent FEA applications can deliver 
results of higher accuracy that exceed the needed level for the KBS at hand [MERKLEY

1998, BIHLMAIER 1999, VON PRAUN 2003, CAMELIO et al. 2004, ZAEH et al. 2006]. 
The boundary conditions are obtained from process documents and models (e. g. eM-
Workplace®). Simulations of the flexible assembly parts were conducted using Hy-
permesh® and Patran®/Nastran®. Moreover, the uncertainty of the results is compen-
sated for by the inference engine. 

6.2.4 Results 

6.2.4.1 General diagnostics  

The following list presents some important features of the BIW assembly that are im-
plementable as general diagnostic rules. These general diagnostic rules may also be 
regarded as metarules [RAUMA 1997, JACKSON 1999, MAQBOOL et al. 2005] that 
guide the use and the priority of case-specific rules. They can be projected on a known 
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assembly configuration to generate case-specific rules, i. e. use common knowledge to 
generate specific knowledge. Where due, reference is made to literature containing 
similar results.  

Process configuration, number and locations of the spot welds and fixtures affect 
the assembly variation (also in LIU 1995).  

In-plane faults (e. g. gaps) are often caused by locators or fixtures. Welding guns, 
clamps or part faults cause out-of-plane faults (e. g. flush). In both cases, correla-
tions are observed.  

Key contributors to the final fault pattern in BIW assembly include the tooling er-
ror, part accumulative error and reorientation error along the propagation path 
(also in JIN & SHI 1999). 

The stiffness of a parallel assembly increases while the variability of the resultant 
dimension decreases. The stiffness of a serial assembly decreases while the vari-
ability of the resultant dimension increases [HU 1997]. 

The behavior of stiffer parts is dominant in determining the overall assembly 
variation [LIU 1995]. 

Assembly operations tend to reduce the mean shifts but increase the variation. 

A direct relation exists between the shear forces provided by the weld nuggets 
and springback [LIU 1995].  

Lap joints absorb assembly variation and offer lower risk of fault propagation 
than butt joints, i. e. butt joints are more likely to be a fault source.  

Stations where simultaneous welding takes place are less likely to contribute to 
the overall dimensional variation. Sequential welding results in higher variation. 

Welding from strong to weak results in higher variation. Stations with this con-
figuration are more likely to be fault sources.  

If the measured values indicate correlated deviations, then the probability of a 
single fault source is higher. If the measurements are uncorrelated, then they have 
different root causes [CEGLAREK & SHI 1995]. In contrast, CARLSON & SÖDER-

BERG 2003 assume that multiple but uncoupled locator errors occur. The field 
study (Chapter 3) confirmed the former postulation. 

Tailor-welded blanks have lower variation levels than normal blanks. 

Faults occur more frequently after cold starts. The stamped parts in storage or in 
nests cool down and contract causing deviations (e. g. outliers). The same effect 
takes place after temporary shut-downs.  
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In the warm-up phase of assembly robots, trends in the mean values of the quality 
characteristics are to be expected. If temperature drift compensation is applied, a 
saw-tooth behavior is usually observed.  

If all measurement points (MP) move together with the same amplitude and direc-
tion, the principal locating panel (e. g. the door inner panel) or the coordinate 
transformation matrices should be checked. 

Outliers falsify calculated correlation coefficients drastically. 

Practically, assemblies are non-fully diagnosable. The best station-level diag-
nosability is the primary target followed by the diagnosis on locator level. 

The door assembly is dominantly parallel in nature. The hanging strategy of the door 
compensates for gap errors but not for flushness errors. Hence, the critical fault root 
causes relate to flushness, as reflected by the measurement scheme. Mixed contact po-
sitioning19 prevails in the assembly process. Reorientation effects on the fault pattern 
in the case of the door are minimal because of the parallel assembly. 

6.2.4.2 Case-specific diagnostics 

The fault knowledge should contain information on the event (product deviation or 
fault pattern), the process (context of fault occurrence), the cause (deviation root 
cause) and the action (troubleshooting measure) [HATAMURA et al. 2003]. When de-
scribing the faults in the knowledge base, these four basic aspects are complemented 
by information on the frequency, probability and risk of the fault. The fault pattern is 
described in vector form compatible with the measurement scheme. The following 
examples illustrate how case-specific knowledge and diagnostic rules can be gener-
ated. At the same time, these examples represent general approaches to modeling 
geometrical faults in BIW. 

Case 1: Fixture grouping (e. g. high variation due to clamp fault)

It is impractical to consider each locator or clamp as a fault source. Hence, it is pro-
posed to form fixture groups that contain related elements that cause similar fault pat-
terns. In this way, it is possible to reduce the number of variation sources in the 
knowledge base and yet cover a sufficient number of fault root causes. Figure 6.6 illus-
trates the procedure and shows the relation between a product fault and its possible 
root causes.  

19 The terminology adapted from CARLSON & SÖDERBERG 2003. In mixed contact positioning one part is typi-
cally fully constrained by its fixture, while the other is constrained by both the first part and another fixture. 
Another possible configuration is the fixture contact positioning, where the parts to be assembled are fully con-
strained by their respective fixtures. Both situations are common in the automotive BIW assembly. 
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Figure 6.6: Example of possible clamp faults with similar effect on the final product 

Fixture groups at the relevant assembly stations are identified and prioritized to form 
the diagnosis search space. Prioritization depends on the contribution of each station to 
the geometry and the results of statistical tolerance analysis. The aspect of prioritiza-
tion is addressed in the next section and later again in terms of the inference engine 
and the conflict resolution strategy. The fault effect in Figure 6.6 is described as a cor-
related out-of-plane variation, which is typically associated with clamping force varia-
tions. The fault effect can be detected through the multivariate stage in the fault recog-
nition module (refer to Section 5.3 and Section 5.6). With the premise of such a fault 
pattern, the consequent of the diagnostic rule guides the user to search in station 3 with 
highest priority followed by the other two possible root causes.  

Case 2: Tool path tracking (e. g. mean shift due to weld gun offset)

An offset in the weld gun is a common root cause for deviations in the final product. 
Such a fault often leads to correlated mean shifts of the measured quality characteris-
tics. It is generally possible to establish a relation between the tool (weld gun) path in 
the assembly station and the effect on the product. Referring to Figure 6.7, the weld 
nuggets in the upper right corner of the door are applied in stations 3 and 4, respec-
tively. In case a fault pattern with maximum deviation at this position is detected, the 
diagnostic rules would indicate a root cause in station 3 with higher probability than 
station 4. The third priority is set to station two considering possible error accumula-
tion and reorientation effects. Such a fault is recovered either by reprogramming the 
robot or adjusting the weld gun offset. As mentioned before, welding and handling 
robots typically serve more than one assembly station in common line configurations. 
Thus, the same welding gun may be associated with more than one rule in the knowl-
edge base. The latter notion is beneficial since it allows the differentiation between 
robot programming errors that cause local deviations and physical damages in the weld 
gun that affect the whole tool path. 
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Figure 6.7: Weld robot paths as a basis for generating case-specific diagnostics 

Case 3: Fault modes of large panels (e. g. bending of the door inner panel) 

Large panels in BIW are susceptible to bending and twisting deformation modes that 
may dominate the whole assembly. The door assembly is no exception and is domi-
nated by the deformation modes of the door inner panel, which is the main locating 
panel of the door. The knowledge base hence should include diagnostic rules that cap-
ture such behavior, as illustrated by the following example. 

A bending deformation about the X-axis of the door may occur during the assembly 
process. Applying excessive torque to the assembly bolts joining the side impact beam 
to the door inner panel in station 7 is identified as the most significant root cause of 
this mode. The effect can be readily predicted through an FEA in the process planning 
phase. Figure 6.8 shows the results of FEA with approximated boundary conditions 
that led to generating a corresponding fault pattern. The values implemented for 
clamping and joining forces can be determined from the known pneumatic pressure of 
the clamps and weld guns. 
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The simulation in Figure 6.8 uses multiple point constraints to model the weld spots 
and the threaded joint. Reorientation effects on the final fault pattern are minimal be-
cause of the parallel nature of the door assembly. The result agrees with the observed 
fault pattern in actual measurements. FEA using approximated boundary conditions 
can be conducted in a similar way for other fault scenarios.  

Scale in m

Clamps

Application point of unit
torque

Figure 6.8:  Effect of faulty process parameters during the side impact beam  

assembly - FEA deformation results (main figure) and 

boundary conditions (upper left corner)  

Case 4: Single station related faults (e. g. gap deviation in window slit)

Some fault patterns can be associated with certain assembly stations with high prob-
ability. A correlated deviation in the window gap size is one such example (Figure 
6.9). The fault pattern can be associated with station 6 only and is completely captured 
by the measurement points 2, 3, 5 and 6 (refer to the measurement scheme in Figure 
3.5 on page 50). Formulating a diagnostic rule is straight forward in this case. How-
ever, it requires more analysis to identify which locator or tool is responsible for the 
fault. If part rigidity can be fairly assumed, 3D-CAD representations of fault cases as 
indicated in Section 6.2.3 may be used to predict the corresponding fault pattern.  
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1

2

Figure 6.9: Gap deviation between the door inner and outer panels (ideally 1 = 2)

6.2.4.3 Representation of the results 

The diagnostic rules collectively represent an abstract description of the assembly 
process from a fault propagation point of view. The results of the knowledge acquisi-
tion process are formulated in an adapted FMEA form, where the quantities S’, O’ and 
D’ replace the conventional S, O, and D, respectively. S’ represents the impact of the 
root cause on the fault pattern, i. e. to which extent the root cause contributes to the 
fault severity. O’ represents the frequency of occurrence of the fault root cause. D’ 
reflects the analysis effort and time required to establish enough certainty about the 
fault root cause. The three parameters are multiplied to give the adapted risk priority 
number (aRPN). The interpretation of the parameters S’, O’ and D’ is summarized in 
Table 6.2.

Table 6.3 gives an outline how the knowledge acquisition results are documented us-
ing the developed metrics. The table includes additional information, such as the de-
scription of the fault cause and information on the recovery action. The issue of recov-
ery cost (last column in Table 6.3) will be addressed later in the decision module 
(Chapter 7).
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Table 6.2: Adapted FMEA parameters 

Parameter Value  Interpretation 

1 - 3 Root cause is an insignificant contributor to the fault pattern 

4 - 7 Root cause is a moderate contributor to the fault pattern S’

8 - 10 Root cause is a major contributor to the fault pattern 

1 - 3 1/20000 or once every four weeks* and lower 

4 - 7 1/5000 or once a week*  O’ 

8 - 10 1/1000 or once a day* and higher  

1 - 3 Root cause can be identified easily 

4 - 7 Root cause can be identified with moderate effort D’

8 - 10 Root cause can be identified with difficulty 

   * Intervals are based on the investigated door production line 

6.3 Rule base (knowledge representation) 

Rule-based systems are the most widely used form of KBS [DYM & LEVITT 1991]. A 
rule can be expressed as: 

 <Rule>: If <premise> then <consequent> (6.2) 

or

 <Rule>: If <attribute> satisfies <condition> then execute <action> (6.3) 

Thus, the knowledge base or the rule base consists of a number of if-then rules with 
these basic components: 

Attributes: Measurement data or quality characteristics  

Conditions:  Deviation categories, e. g. negative large, normal, etc.  

Actions:  Assigning the pattern to a modeled fault class  

Rules:  Diagnostic rules linking attributes, conditions and actions 
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Table 6.3: Door assembly diagnostics – adapted FMEA representation  

Fault  

pattern* 

Fault 

effect 

Root 

cause
S’ O’ D’ aRPN

Recovery 

action 

Recovery 

cost 

Station 3,  

clamps 5, 7, 8

(fixture grp. 2)

6 2 4 48

Station 4,  

clamp 2 
5 2 3 30

Pattern 1 

Optical 

(flushness),  

noise

Station 7 

clamps 6, 8 
4 3 2 24

Add

shims, 

replace 

clamp 

moderate 

Station 3 7 4 6 168

Station 4 7 3 5 105Pattern 2 

Optical 

(flush-

ness/gap),  

noise Station 2 5 3 6 90

Reteach 

robot, 

grind 

weld tips 

low 

Pattern 3 

Optical 

(flushness),  

noise

Station 7, 

torque span-

ner 

8 4 2 64
Adjust 

spanner 
low 

Pattern 4 
Optical 

(gap)  
Station 6 6 2 3 36

Adjust 

locators
moderate 

… … … … … … … … …

* Described in vector form 

The advantage of rule-based systems lies in the ability to combine several rules if no 
unique classification is possible and in the intuitive elicitation of expert knowledge. A 
rule base can be represented as text, as decision tables or in graphical form 
[GONZALEZ & DANKEL 1993]. The conditions in the rule premise represent an assess-
ment of the product quality and are mostly communicated verbally by the human ex-
pert. Also, considering their different natures, it is convenient to describe the correc-
tive actions in linguistic form. Fuzzy reasoning offers a suitable solution for knowl-
edge reproduction in such a case.  

For case-specific diagnostics, fuzzy representation allows inference under partial ful-
fillment of the rule conditions and associates each suggested action with a matching 
degree. The benefits extend further in the case of general diagnostics as it is very diffi-



6 Fault identification module 

98

cult to develop exact definitions for many of the classification mechanisms applied by 
human experts. Associating linguistic terms with fuzzy sets guarantees transferability 
and intuition in the application. Fuzzy rules, fuzzy inference and conflict resolution for 
the acquired diagnostic rules are discussed next in Section 6.4.

The rationale of the conflict resolution strategy is explained as follows. For the most 
part, the acquisition of specific process knowledge followed a forward reasoning pat-
tern (Figure 6.10). In contrast, to build the rule base, backward reasoning is needed in 
order to infer the root cause using knowledge about the actual quality deviation or fault 
pattern. An inherent problem to such backward logic is diagnosability. Practically, 
several fault sources may lead to the same type of defect. Upon the detection of such 
defects, relevant diagnostic rules experience an execution conflict. Thus, a conflict 
resolution strategy must be defined in order to supervise the execution of simultane-
ously triggered rules.  
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Figure 6.10: Forward versus backward reasoning in fault knowledge acquisition  

and representation 

6.4 Inference engine (knowledge reproduction) 

6.4.1 Procedure 

Chaining

A powerful problem-solving paradigm is achieved by chaining of if-then rules to form 
a line of reasoning. If the chaining starts from a set of conditions and moves towards 
conclusions, the method is called forward chaining. When built into a program mod-
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ule, this problem-solving method is known as the inference engine. An inference en-
gine manipulates knowledge stored in the knowledge base in order to infer actions. In 
forward chaining, actions are merely triggered whenever they appear on the action list 
of a rule whose conditions are true. This involves assigning values to attributes, evalu-
ating conditions, and checking to see if all of the conditions in a rule are satisfied. 

Fuzzy rule-based inference

Fuzzy set theory generalizes the classical set theory to allow partial membership. A 
fuzzy set is a set with a smooth boundary that is often associated with a linguistically 
meaningful term. The degree of membership in a set is expressed by a number be-
tween 0 and 1; 0 means entirely not in the set, 1 means entirely in the set, and a num-
ber in between means partially in the set. A fuzzy set is thus defined by a function that 
maps objects in a domain of concern to their membership values in the set. Such a 
function is called a membership function and is denoted µ [YEN & LANGARI 1999]. 

For the purpose of knowledge-based fault identification, fuzzy inference should com-
prise two steps in order to perform proper classification: matching and implication. 
Matching refers to determining the degree to which an input matches the conditions of 
a rule. Implication is calculating the rule’s conclusion based on the matching degree. 
Matching and implication operations are often referred to collectively as fuzzy map-
ping. The input and output spaces must be partitioned before mapping can take place. 
The results of all rules are managed by a tailored conflict resolution strategy.  

6.4.2 Fuzzy inference 

Input space

The input space represents the fault pattern and hence consists of a maximum of fif-
teen quality characteristics as attributes in the case of monitoring the door production 
line. Consequently, any rule may contain up to a maximum of fifteen conditions. 
Figure 6.11 shows the employed input partition scheme for an arbitrary quality charac-
teristic. The universe of discourse20 is chosen to be the 6  value of each quality charac-
teristic. The partition applies triangular membership functions and satisfies the sum-to-
one21 and the closest neighbor22 conditions [YEN & LANGARI 1999]. The partition into 
five categories is consistent with the design of the fault recognition module. The cho-
sen number of descriptive terms is typical in fuzzy representations, which are rarely 
more than ten, rarely less than three and typically five [CHEN & HWANG 1992].The 
same recognition window size of forty measurement cycles (refer to Section  5.5.1.2) is 

20 The universe of discourse is the domain of interest to which the input values belong. 
21 The membership values of any possible input in all relevant fuzzy sets should sum up to unity.  
22 Each membership function overlaps only with the closest neighboring membership functions. 
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implemented to estimate the average deviation of each quality characteristic. The proc-
ess mean values obtained in this way are fed directly to the inference engine. 

1

µ
NL NS N PS PL

0 +1 +2-2 -1

Membership 
function

Measurement point
(deviation)

N: normal NL: negative large

NS: negative small

PL: positive large

PS: positive small

Figure 6.11: General input partition scheme for all fifteen quality characteristics 

Output space

The output space describes the domain of possible rule consequents. The consequent is 
a linguistic statement containing information on the fault root cause, its risk priority 
and possible recovery actions. The form of the consequent is similar to Equation 6.4: 

 If <…> then fault in station 3, fixture group 1, aRPN is 64, replace clamp/add shims 
  (6.4) 

Fuzzy mapping 

Fuzzy mapping determines how the input parameters and the conditions of the fuzzy 
rules agree. The goodness of fit is referred to as the matching degree, denoted  and 
often labeled the firing intensity of the rule. The set of fired fuzzy rules are prioritized 
according to their firing intensity. 

The crisp (non-fuzzy) inputs of the inference engine are fuzzified according to the in-
put space partition. Fuzzy operations are then implemented to calculate the matching 
degree of a rule’s premise. Logical conjunction (AND) operations are computed using 
the fuzzy min-operator (Equation 6.5).  

The min-operator is ))a(),...,a(),a(min( rir22i11ii  (6.5) 

where i is the matching degree of the input MP1 = a1 ,  MP2 = a2, … , MPr = ar to the 
conditions of rule Ri, denoted i .
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Logical disjunction (OR) operations are carried out using the max-operator (Equa-
tion 6.6). 

The max-operator is ))a(),...,a(),a(max( rir22i11ii  (6.6) 

The complete mapping procedure is illustrated in Figure 6.12. If different patterns are 
identified with the same firing intensity, the calculated aRPN is applied to set action 
execution priorities. The simultaneous application of both quantities i and aRPN aims 
at better exploiting the available knowledge. Fuzzy mapping is followed by the con-
flict resolution strategy outlined in the next section that provides the user with the final 
diagnostic results.  

µ1

NL NS N PS PL

MP1

Rule 1: If MP1 is NL and MP2 is PS then fault source is cause 2

µ2

MP2

NL NS N PS PL

0.8

1.0 Cause 2

Matching
degree = 0.8

µ1

NL NS N PS PL

MP1

Rule 2: If MP1 is NL and MP2 is NS then fault source is cause 5

µ2

MP2

NL NS N PS PL

0

1.0

Not fired!

Measured value

Figure 6.12: Two exemplary diagnostic rules involving two quality characteristics 

MP1 and MP2. The min-operator is implemented for matching and im-

plication.

6.4.3 Conflict resolution 

In order to maximize the benefit from the rule base, the rules are divided into levels 
corresponding to their level of specification. Based on previous discussions of diag-
nosability (Sections  6.2.3), the following rule levels are proposed (Figure 6.13):

Tool level:  identifies a certain robot, weld gun, fixture or fixture group  
as the fault root cause 

Station level:  identifies a certain station as the fault root cause 
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General level: provides general instructions for recovery actions or refers the user 
to possible external effects, such as stamped part geometries or 
measurement system failure 

For each input pattern, the identified action or fault class with the highest firing inten-
sity is selected and compared to a threshold value. If the membership degree is equal 
to or greater than the threshold, the pattern is assigned to that class. If a pattern has 
equal membership degrees in different fault classes, the one with the highest risk crite-
rion has the highest priority. If the latter is not successful, the pattern is labeled unclas-
sified. A membership threshold of 0.5 was shown to be adequate in similar applica-
tions [YEN & LANGARI 1999]. The diagnostic strategy is summarized by the following 
metarules: 

Metarule 1: Any rule in any level is considered fired iff its matching degree ex-
ceeds a threshold value of 0.5. 

Metarule 2:  The rules with the highest firing intensity in the highest triggered 
specification level are considered the most probable candidates.  

Metarule 3:  Cross check with fired rules from the next specification level for in-
consistencies. If any, then the fault pattern is labeled unclassified. 

Metarule 4:  If more than one class with the same firing intensity are identified, 
then apply the risk priority criterion to establish action priorities.  

Metarule 5:  Otherwise, the fault pattern is labeled unclassified. 

Level 1: tool

Level 2: station

Level 3: general

Unclassified pattern

instructions from the general diagnostics 
or other instructions, such as measurement 
system failure or stamped part defects

e. g. cases 2 and 4 in Section 6.2.4.2 

e. g. cases 1 and 3 in Section 6.2.4.2 

max.

Degree of specification
w.r.t.

process components : In case of no match, move to …: In case of no match, move to …

Figure 6.13: Diagnostic strategy and rule levels 
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6.5 Implementation and results 

The rule base considered a total of seven weld stations of the door assembly line. Four-
teen fixture groups were identified and assigned twenty-three rules, of which six rules 
indicated unique root causes. Nine rules were assigned to the weld robots and three 
rules to the stationary weld guns. On average, four rules and two rules were triggered 
for cases identified on the tool/station level and the general level, respectively. The 
rule base and the inference engine were validated using real process data as illustrated 
by the following examples.  

Figure  6.14 shows a quality defect described as a flushness error in the A-pillar region. 
The first possible root cause, labeled cause 3 in the figure, is a fixture group involved 
in the assembly of the inner panel and the inner panel reinforcement. The second pos-
sible cause, labeled cause 6, refers to a fixture group in the assembly of the outer panel 
reinforcement and the door inner. Both root causes are equally possible according to a 
fault tree analysis. However, considering the risk criterion, cause 3 receives the higher 
priority since its contribution to the final geometry is higher. This is reflected in the 
equal firing intensity and the different aRPN of both root causes. In this scenario, the 
system delivered a total of four possible root causes after applying the conflict resolu-
tion strategy. It is clear that the lower firing intensity of causes 8 and 11 render them 
less favorable candidates here. The aRPN proved as an adequate criterion for enhanc-
ing the fault analysis capability. The four rules in Figure  6.14 had fifteen conditions in 
the premise. Generally, the more specific a rule is, the more conditions it would exam-
ine.

The previous example illustrated the use of specific rules on the tool diagnostic level. 
Faults due to local weld gun offset problems (e. g. when weld spot positions need to be 
retaught) are handled in the same manner. In the case of robot faults or a damaged 
weld gun, the fault pattern is associated with more than one station, which is typical to 
common assembly line configurations. The diagnosis of such fault cases depends on 
the results of the equally fired rules in the station level. The case illustrated in Figure 
 6.15 resulted due to faulty coordinate system settings in robot 3 serving stations 2 and 
3. In the figure, cause 12 refers to station 2 and cause 14 refers to station 3, which 
were both triggered with the same firing intensity.  

If no successful matching on the tool or the station level is achieved, general instruc-
tions are generated before declaring the input pattern unclassified. General rules would 
check, for example, if the deviating points are in-plane or out-of-plane. A rule is in-
cluded to suggest checking consumed weld energy which correlates with the weld spot 
quality, in case unclassified out-of-plane deviation patterns are identified. Similarly, 
faulty robot temperature drift compensation which leads to wrong coordinates is also 
indicated as a possible root cause in the rule base.  
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Figure 6.14: Illustrative example for the fault identification results  
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6.6 Conclusion 

The chapter introduced a rule-based fault identification system for analyzing quality 
defects and root causes in BIW assembly. General-purpose and specific-purpose 
knowledge acquisition tools were implemented to build the rule-base. The design of 
the fuzzy inference engine was discussed and a conflict resolution strategy was devel-
oped. For conflict resolution purposes, metarules were devised to enhance the fault 
isolation capability of the inference engine in addition to the combined use of the risk 
priority and the firing intensity criteria. Finally, the plausibility of the approach was 
proved using real-world test cases.  

Because of its inherent flexibility and intuitive implementation, the rule-based ap-
proach proved suitable for the case of BIW assembly. However, a potential problem 
that demands careful knowledge management is the possible loss of overview of the 
rule-base. Regular checks or mechanisms should be deployed to prevent rule redun-
dancy and keep an optimal number of rules at all times.  

An advantageous point of the approach is that a rule-base can be reimplemented for 
similar BIW assembly lines. This notion gains further importance since manufactures 
always favor standardization of manufacturing procedures. Assembly lines of the same 
vehicle components follow an assembly scheme that is often common across different 
vehicle models and possibly across different manufacturers. Furthermore, process pa-
rameters may be included in the rule premise in addition to the product characteristics. 
As such, the capabilities of the proposed fault identification module can be extended to 
match an online supervisory control system that reacts to product faults.  

At this point, the fault recognition and the fault identification tasks have been ad-
dressed. The following step, as described in Chapter 4, is to formulate the decision, if 
the process will be stopped and adjusted. The decision is governed by the statistical 
and the economical considerations that are associated with the identified fault case. 
Methods for quantifying both aspects are presented in the next chapter. 
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7 Decision module 

7.1 Overview and module structure 

The two previous modules handled the recognition of process instabilities and the in-
vestigation of their root causes. This information is indeed helpful to the quality practi-
tioner, but not sufficient to make a decision whether to interrupt the process immedi-
ately or to allow further production. The module described in this chapter is, hence, 
labeled decision. The module proposes modeling the knowledge necessary for the lat-
ter task by means of two criteria. A statistical criterion examines the probability of the 
identified fault and a cost criterion estimates whether it is economical to continue pro-
duction with the current deviation or to adjust the process (Figure 7.1). Only if both 
criteria are fulfilled, a recovery action is recommended by the diagnostic system. An 
illustration of the underlying theoretical background and implementation is included in 
the following sections. Practical examples demonstrating the validity of each compo-
nent are presented. A discussion of the results concludes the chapter.  

Process

Measurement Adjustment

Fault identificationFault recognition Decision

Process interface

Probability

Cost

Probability

Cost

Figure 7.1: Components of the decision module 
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7.2 Fault probability criterion 

7.2.1 Objective of fault probability consideration 

If the value of a quality characteristic lies outside the allowed tolerance, the product is 
sorted out and either scrapped or reworked. A quality practitioner would not adjust the 
process then unless it is plausible to believe the fault is due to an assigned root cause 
and not just due to common cause variation or an outlier. Doing so, he measures the 
fault likelihood against a subjective threshold according to his experience. The fault 
probability criterion subjects the alarm signals from the fault recognition module to the 
same statistical analysis the human expert naturally conducts. The analysis is known in 
the literature as probabilistic reasoning [ROLSTON 1988, SACHS 2004]. Bayesian statis-
tics stand as a widely accepted area in probabilistic reasoning for applications involv-
ing subjective postulations [GELMAN et al. 2004].

7.2.2 Bayes’ Theorem 

Bayes’ Theorem implements a postulated a priori probability (subjective knowledge) 
of an event to infer the a posteriori probability of a dependant event [GELMAN et al. 
2004, SACHS 2004]. Thus, the theorem makes use of available sample data (objective 
knowledge) to dynamically update the required conditional probability. Bayes’ Theo-
rem can be generally formulated as in Equation 7.1: 

i
iij

iij
ji )A(P)A|B(P

)A(P)A|B(P
)B|A(P  (7.1) 

where

iA  states of nature (possible, mutually exclusive, underlying events)  

jB  observable events (possible, mutually exclusive) 

)A(P i  a priori probabilities (unconditional probabilities also known as priors, 

i. e. before observing an event jB ) 

)A|B(P ij  likelihoods (conditional probabilities of each observable event given 

each state of nature) 

)B|A(P ji  a posteriori probabilities (i. e. after observing an event jB , also known 

as posteriors) 

i
iij )A(P)A|B(P  marginal likelihood 
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The marginal likelihood is a normalizing constant that ensures the posterior adds up to 
unity; it can be computed by summing up the numerator over all possible values of A. 
Accordingly, the posterior can be expressed in a simpler form as given by Equa-
tion 7.2:

likelihoodinalargM

iorPr*Likelihood
Posterior  (7.2) 

Thus, the idea is to use the qualitative information of a process evaluator to form a 
prior distribution and the statistical information of an outcome evaluator to update the 
prior and obtain a posterior distribution [VANDE VATE 1982]. The Bayesian approach 
in statistics has many advantages, especially in sequential applications, such as pro-
duction processes [SACHS et al. 1995]. One advantage is that it elicits the assumptions 
for the parameter of interest from the user by having him explicitly specify the prior 
distribution for the parameter. The value of probability is recalculated each time using 
the previous posterior as the new prior [GELMAN et al. 2004]. 

7.2.3 Implementation 

Given that an alarm is signaled, the a posteriori probability of a fault occurring in the 
production line P(F | A) is given by Equation 7.3. 

)F(~P)F|~A(P)F(P)F|A(P

)F(P)F|A(P
)A|F(P  (7.3) 

where A is the event of an alarm signal being issued by the fault recognition module 
and F is the state that an assigned cause of the detected instability exists. P(F | A) 
represents the required conditional probability of an unstable process. ~F is equivalent 
to )F1(  and is read “not F”. 

P(A | F) stands for the probability of recognizing a fault, given that it actually exists. 
Its value depends on the monitoring system characteristics and is obtained from the 
results of the fault recognition module. The average classification rate of the univariate 
stage was 93.2% (refer to Section 5.5.2). Accordingly, the value of P(A | F) is 0.932. 
P(A | ~F) represents the probability of alarm, given a normally running process. In 
other words, it is equal to the type I error or the false alarm rate. Referring to the re-
sults of the first module, its value is 0.01. 

The remaining critical parameter is the prior P(F). The prior is a quantification of the 
expert knowledge on the probability that a certain fault occurs in a known setting. For 
instance, in the case of the door assembly, the field study showed that the assembly 
line is adjusted two to five times per week. Considering a five-day week and 700 doors 
per day, an overall prior fault probability of 0.001 can be safely assumed, with no re-
gard to the nature of fault. Figure 7.2 shows the result of updating the a posteriori fault 
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probability given that successive alarm signals are issued. The figure suggests that one 
alarm signal is not a sufficient proof of process instability. However, if the alarm sig-
nal is repeated, the probability of a fault increases rapidly. Due to the relatively good 
fault recognition capabilities achieved in the fault recognition module, errors in pre-
dicting the prior P(F) have negligible effect on the posterior. With lower values of pri-
ors, a higher number of alarm signals is needed to infer statistical plausibility of a re-
covery action.  

The probability criterion is considered to be fulfilled if and only if a predefined thresh-
old value is exceeded. A threshold value of 80% was suggested in the literature for this 
purpose [BAYDAR & SAITOU 2001]. The alarm signal counter may also consider a de-
fined production interval and not only strictly successive alarm signals. For example, 
for P(F) of 0.0001, three alarm signals are enough to exceed 80% posterior probability. 
The counter can be programmed in this case to consider three alarm signals within the 
last five measurement cycles as successive. 

The a priori probability can be determined for each fault category separately, and thus 
attains much lower values than the overall prior. The values can be obtained from 
process history or through FMEA, tolerance analysis studies and simulations. The re-
sult is related to the estimated fault occurrence probability (O’) in the adapted FMEA 
(refer to Section  6.2.4.3). If the effect of the prior is low, as in the case at hand, an ex-
act estimation of the prior is not required. A further positive aspect of Bayes’ Theorem 
is that the designer and the terminal decision maker may have different prior beliefs 
corresponding to their different experiential rules. The theorem gives space for such 
discrepancies and simply updates the available rule with the new postulation. 
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7.3 Recovery cost criterion 

7.3.1 Objective of recovery cost consideration  

Quality control schemes such as SPC do not include the production costs in the as-
sessment of process stability [GUH & O'BRIEN 1999]. However, in many cases, the 
observed deterioration in product quality does not justify a corrective action. Given 
that a fault in the production process is identified, the quality engineer will still want to 
consult the process economics before deciding on a recovery action. The basic concept 
here is to compare the loss incurred due to a quality defect (magnitude and develop-
ment of the deviation) to the cost of prevention or recovery at the instant of fault rec-
ognition. In batch production, the batch size would be a governing factor for the deci-
sion. Thus, the decision would be whether to immediately adjust the process or to 
complete the running batch and then adjust the process. Similarly, in series production, 
the maintenance schedule plays the same role.  

The following section attempts to construct a theoretical model for the described trade-
off. Using available knowledge and current process measurements, the model delivers 
a recommendation to the user. A quantification of the available quality margin for the 
latter case is also provided.  

7.3.2 Theoretical background  

7.3.2.1 Prevention-appraisal-failure (PAF) quality cost model  

Quality related expenditures are probably the most controllable within the whole pro-
duction budget [JURAN & GYRNA 1988] and pose a large savings potential if wisely 
allocated. Figure 7.3 gives a simplified overview of the elements of production costs 
[TAYLOR 1989]. Operating costs of quality are divided into prevention, appraisal and 
failure costs, also known as PAF. The three highlighted blocks in the diagram repre-
sent the two sides of the aforementioned trade-off: prevention and appraisal costs be-
ing on one side and internal failure costs being on the other. A notional representation 
of the three components was given in Figure 2.9. PAF costs do not include a quantifi-
cation of quality deterioration. Taguchi’s QLF presents a complementary approach 
covering the latter deficit. 
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Figure 7.3: Simplified overview of the production cost elements 

7.3.2.2 Taguchi’s quality loss function (QLF) 

Taguchi defines: “quality is the loss a product causes to society after being shipped, 

other than any losses caused by its intrinsic functions” [TAGUCHI et al. 1989]. The so-
ciety in the loss concept of Taguchi includes manufacturers, customers, environment, 
and all others who come directly or indirectly in contact with the product. In this 
sense, Taguchi does not adhere to defining quality as conformance to requirements 
[JOSEPH 2004] and quantifies the deviations from requirements in terms of monetary 
units by using the quadratic loss function given by Equation 7.4: 

2)ym(k)y(L  (7.4) 

where L is the quality loss at value y, y is the current (averaged) value of a nominal-
the-best quality characteristic and m its target value. k is a constant relating the devia-
tion from target to cost. Compared to the conventional goalpost approach (Figure 7.4),
Taguchi combines specifications, target value, deviation, and economy into one pack-
age to measure quality. The QLF has been extensively used for evaluating quality im-
provements in planning phases for the design or the adjustment tolerance limits 
[CAMPANELLA 1990, PEACE 1993, ROSS 1995]. However, online applications of the 
approach rarely exist. 
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Figure 7.4: Taguchi loss function versus goalpost approach 

7.3.3 Proposed online quality cost assessment  

Figure 7.5 characterizes qualitatively the cost aspects in case of a fault instance. The 
upper two diagrams represent changes in the PAF costs while the lower diagram de-
scribes the lost quality in monetary terms following Taguchi’s definition. If a fault oc-
curs, the quality of the product deteriorates and the quality loss increases accordingly. 
At the same time, the operative costs increase as more rework is incorporated in the 
production process (higher slope in the uppermost diagram). If the fault severity is too 
high to tolerate, the process is stopped and adjusted. The latter recovery cost manifests 
itself as an increase in the average product cost and a parallel decrease in the quality 
loss. The cycle (T) in the figure is defined as the time period in product units from the 
beginning of the production - or after an adjustment - to the elimination of the assign-
able root cause [NAYEBPOUR & WOODALL 1993].  

The proposed approach for online cost assessment (Figure 7.6) combines PAF and Ta-
guchi cost models to determine a break-even point (BEP) between the process adjust-
ment costs and the quality loss per produced part. The process is assumed to exhibit a 
systematic fault while still within the specification limits, e. g. a shift in the process 
mean. Costs due to fault detection lag are neglected under the assumption of 100% 
inspection. Nominal-the-best features are considered. Also, the generalization of the 
trade-off to larger-the-better and smaller-the-better features is straight forward. 
Clearly, if the specification limit is exceeded, there is no need for conducting such a 
trade-off as the process will be stopped immediately. 
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In Figure 7.6, the quality loss Ca (curve 1) is modeled as a quadratic function as given 
by Equation 7.5: 

2
2
max,a

a )my(
C

C  (7.5) 

The quality loss is zero when the process is on target (m) and increases quadratically 
with the deviation magnitude (y-m). The loss reaches a maximum (Ca,max) at the speci-
fication limit (m+ ), which corresponds to the cost of rework or scrap. The curve thus 
accounts for expected losses in downstream operations due to an off-target process 
mean. The fault pattern affects the value of the quality loss, while the cost of process 
adjustment depends on the fault root cause identified. The amount of process deviation 
observed affects both quantities. 

The process adjustment costs Cb (curve 2) are modeled as a linear function of the de-
viation (y-m) as given by Equation 7.6: 

)my(
C

CC 2b
1bb  (7.6) 
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Figure 7.6: Concept of online quality cost assessment 

The assumption of linearity is fairly plausible considering the following two cost com-
ponents. The direct recovery cost Cb1 is a constant part that relates to basic repair and 
maintenance activities, such as replacement through spare parts (hardware) or adjust-
ing control parameters (software). The second cost component reaches a maximum of 
Cb2 at the specification limit (m+ ) and refers to the cost incurred due to process inter-
ruption during recovery under the assumption that larger deviations demand more ad-
justment time. The variable part also accounts for the shorter process run due to the 
fault instance.  

Both cost components are readily known if the root cause has been identified. This 
information is obtained from the knowledge base and the inference results (Table 6.3).
The estimated fault frequency is used to determine the value of the adjustment cost per 
produced item. In case that the fault can not be identified, it is proposed to implement 
a constant value for Cb, which depends on the interval and the cost of regular process 
adjustments.  

7.3.4 Validation and implementation 

The following examples illustrate the implementation and the validity of the proposed 
cost model. Data obtained from literature and from the production facility was used for 
this purpose. The term process in the illustrated examples refers to an arbitrary quality 
characteristic, which exhibited deviation from normal operation conditions. 
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Example 1

The data for this example was obtained from the car seat assembly line described in 
TSOU & CHEN 2005. The process is symmetrically toleranced with specification 
402 ± 2 mm. The estimated run between adjustments is 5000 parts. Cost of process 
adjustment is 200 $, which corresponds to the adjustment of the car seat frame assem-
bly fixture. The fault considered here is a deviation of the hole-to-hole distance neces-
sary for installing the seat in the vehicle. Rework cost is given at 1 $ per part. 

The problem data summarized in Table 7.2 is used to construct the cost model. The 
term run refers to the expected number of parts between two fault instances. The target 
is to determine the BEP (y*) and act accordingly in case systematic deviation is ob-
served. The variable recovery cost component is considered as 10% of the fixed com-
ponent at maximum deviation. This is a conservative value since no explicit value is 
available. Hence, the BEP is found at 0.404 mm. Knowing that the process ran nor-
mally at a Cpk of 1.47, the calculated BEP suggests that at a process drift of 1  or 
higher, it is recommended to stop and correct the fault. The result compares well to the 
recommendations of the authors, where a similar value was reported as an optimal bal-
ance between production costs and quality investment. In Figure 7.7, sample 1 lies 
within the acceptable region, left of the BEP, while sample 2 is on the opposite side. 
The decision in the latter case falls on an immediate recovery action. 

Table 7.1: Input data for the quality cost trade-off of example 1 

Parameter Value Parameter Value 

Run 5000 parts LSL 400 mm 

Target 402 mm Rework cost 1 $/part 

USL 404 mm Recovery cost 200 $ 

Example 2

This example is based on the process described in GUH & O'BRIEN 1999 and origi-
nally published in MONTGOMERY 1980. The investigated characteristic is the inside 
diameter of piston rings in a forging process. Table 7.2 summarizes the process data. 
The variable recovery cost component is 10% of the fixed component at maximum 
deviation. Applying the postulated cost model, a BEP is found at 74.0049 mm, which 
corresponds to a mean shift of 0.0048 mm. Hence, a mean shift with the latter value is 
high enough to adjust the process. In the described application, the process ran at  of 
0.0044 mm. Similar to the previous example, the critical process deviation is approxi-
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mately 1  away from the target. The achieved result agrees with the authors’ assump-
tion of a normal variation level of 1 . The proposed cost model was capable of captur-
ing the process economics and providing a quantification of the impact of quality 
variation on process costs. 

1.00

402.00 404.00 y (mm)402.40

22

11

402.00 404.00

P(y)

y (mm)
Sample 1 

y = 402.103 mm

0.04

C ($)

4.38

1

Sample 2 
y = 402.757 mm

Figure 7.7: Relation between process deviation, quality costs and statistical  

distribution for example 1 (acceptable quality at sample 1,  

readjustment needed at sample 2) 

Table 7.2: Input data for the quality cost trade-off of example 2 

Parameter Value Parameter Value 

Run 1000 parts Rework cost 150 $/part 

Target 74.001 mm Recovery cost 7500 $ 

USL 74.0182 mm   
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Example 3

This example illustrates one fault case from the door assembly process described in 
Chapter 3. One previously described fault pattern (refer to Section 6.2.4.2) is a flush-
ness fault at the lower corner of the door on the B-pillar side. The data needed for the 
cost model corresponding to this fault case is given in Table 7.3. The quality character-
istic MP 10 is toleranced asymmetrically at +1.35/-0.15 mm. The expected fault fre-
quency is estimated to be once a week according to process history and a run of 3500 
doors is assumed (5 days * 700 doors). Thus, the process adjustment BEP for this fault 
case lies at a mean shift of +0.28 mm or -0.031 mm, i. e. a corrective action is justified 
once the deviation exceeds 20.5% of the allowed tolerance field.  

The example shows the flexible application of the cost model to incorporate rework on 
a time basis and to accommodate asymmetrically toleranced features. The variable 
recovery cost component accounts for the additional tool calibration effort associated 
with this fault case.  

Table 7.3: Input data for the quality cost trade-off of example 3 

Parameter Value Parameter Value 

Run 3500 parts Rework time 5 min 

Target 0 mm Cost per minute 0.85 €/min 

USL +1.35 mm Recovery cost (fixed) 600 € 

LSL -0.15 mm Recovery cost (variable) 100 € 

Example 4

The data in this example relates to a fault case from the same door assembly line, 
where no rework is possible and the product has to be scrapped. Therefore, the cost of 
rework is replaced by that of scrap. Applying the cost trade-off to the process values 
given in Table 7.4, the allowed mean deviation before intervention is at 5% of the tol-
erance field. The value is relatively small and reflects the critical nature of this quality 
defect.  

Example 4 suggests that care must be taken when applying the approach to high loss 
values, such as in the case of scrap. This is expected, as the underlying logic of the 
cost model implies a gradual increase in the incurred loss. Also, the ratio between the 
maximum loss due to poor quality and the maximum cost of process adjustment 
amounts to 400 in the example. This is approximately twenty times as much as the 
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preceding examples, where better agreement with the actual real-world decisions could 
be achieved. 

The approach offers another benefit if the process shows a gradually increasing devia-
tion. After determining the BEP for the identified fault case, the available quality mar-
gin before intervention can be quantified. It is equivalent to the difference between the 
known BEP and the deviating process mean. Noteworthy is that the proposed cost 
model does not address the case of increased variation with unchanged process mean. 
Such a situation is conventionally detected by R-charts or indicated by an increase in 
outliers. In practice, however, such variation patterns are often accompanied by cyclic 
mean shifts that can be efficiently handled by the proposed system.  

A final note is that errors in estimating the parameters of the QLF may not signifi-
cantly affect the quality cost per product, as Taguchi reports [TAGUCHI et al. 1989]. 
Nevertheless, the careful choice of the parameter values is critical for successful appli-
cation of the module and reduction of downstream problems. 

Table 7.4: Input data for the quality cost trade-off of example 4 

Parameter Value Parameter Value 

Run 10000 parts Scrap cost 20 €/part 

Target 0 mm Recovery cost (fixed) 500 € 

USL 0.38 mm Recovery cost (variable) 80 € 

7.4 Conclusion 

The chapter presented a quantitative formulation of two decision criteria for fault re-
covery and process adjustment. The analysis procedure benefits from the synergy with 
the two previous modules: the combination with the early alarm capabilities of the 
fault recognition module and the possibility of case-specific cost estimation using the 
results of the fault identification module.  

The conditional fault probability was modeled in a direct application of Bayes’ Theo-
rem. The results show how the adjustment decision can be delayed until its statistical 
plausibility has been established. The second issue is modeling the quality cost trade-
off between the cost of process adjustment and the cost of poor quality. Mathematical 
expressions of both cost components were presented and validated through practical 
real-world examples. The quadratic QLF and the linear recovery costs offered very 
good approximations of the real process economics and proved as reliable indicators in 
the decision process.  
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Further research on these issues should cross-reference values of fault probability and 
quality costs from different and more diverse production scenarios. Such a study may 
lead to establishing a method for determining the required parameters. It also remains 
to be investigated if other forms of the QLF offer more benefits in quality cost model-
ing.

The detailed description of the components of the proposed diagnostic system is com-
pleted with the conclusion of this chapter. The next chapter describes the integration of 
the three system modules fault recognition, fault identification and decision into a uni-
fied platform.    
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8 Integration and reuse 

8.1 Overview 

The previous chapters addressed the components of a KBS for diagnosis and decision 
support in quality control activities. The components are contained in three modules, 
each having a specific functional area: recognition, identification and decision. This 
chapter describes the integration of these three modules into one homogeneous system 
as well as the integration of the diagnostic system with an existing measurement sta-
tion. A prototype was realized for this purpose. An exemplary case summarizes the 
complete fault handling procedure. In addition, a reuse scenario is discussed to indi-
cate the applicability of the proposed system to a diversity of production environ-
ments.  

8.2 Experimental setup 

The experimental setup shown in Figure 8.1 and Figure 8.2 was built to emulate a 
typical BIW measurement station and to test the developed software prototypes and 
their data interfaces. The communication medium was Ethernet and fiber-optic cables 
(FOC). A Perceptron® FlexiCam® sensor mounted on a KUKA® robot type KR-15/2 
with a KRC control constitute the flexible measurement system. Part fixturing fol-
lowed the 3-2-1 principle. The measurement reports are exported in XML-format23 to 
the analysis PC through a local ftp-server24 and read into the Matlab® environment. 

8.3 Prototype of the integrated system 

The developed diagnostic modules were cast into a software prototype programmed in 
Matlab®. Loose coupling [MEDSKER 1995] was implemented for data transfer be-
tween the modules. Loose coupling in its simplest form refers to communication 
through the export and import of separate data files. It decreases the complexity of the 
overall system and poses higher demands on the modularity of single system compo-
nents. Figure 8.3 gives an overview of the information flow between the three mod-
ules.

23 Extended mark-up language 
24 File transfer protocol 
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Perceptron®
IPNet® system
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Figure 8.1: The realized experimental setup representing a typical BIW  

measurement station 

PLC Ethernet Hub PC/Matlab ®
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Figure 8.2: Schematic diagram of the realized experimental setup 
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Figure 8.3: Information flow in the developed system  

The prototype is acronymed ProRID (Process/Recognition, Identification and Deci-
sion). ProRID receives current geometry data from the measurement station after each 
measurement cycle. If the fault recognition module signals no alarm, the main graphi-
cal user interface (GUI) indicates a normal process (Figure 8.4). However, if the pro-
cess is drifting and a fault pattern from the knowledge rule base could be associated 
with the process behavior, the result is similar to Figure 8.5. The alarm is based on the 
analysis results of the NN system described in Chapter 5, which acts as a trigger for 
the following stages.  

In Figure 8.5, ProRID indicates process abnormalities, suggests the root cause and  
recommends whether to adjust the process immediately or later. If several fault cases 
share the same firing intensity, a message is generated accordingly. The panel titled 
show analysis leads to the details of the three involved analysis stages: recognition, 
identification and decision.  

The ProRID recognition window (Figure 8.6) shows the current mean values of the 
monitored quality characteristics for an arbitrary number of measurement cycles. The 
panel correlations shows the results of the multivariate data analysis using the signs 
(o), (-) and (+) representing no correlation, negative correlation and positive correla-
tion, respectively. The panel titled legend gives the location of the measurement points 
relative to the door geometry. 
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Figure 8.4: ProRID main window for normal process. The user can toggle  

between different quality characteristics (QC) 

Figure 8.5: ProRID main window in the case of a quality defect 
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Figure 8.6: ProRID recognition window 

The ProRID identification window (Figure 8.7) gives the inference results w.r.t. the 
fault knowledge base. The upper part of the window shows the triggered rules, their 
firing intensity and the associated fault risk priority. The lower part of the window is 
intended for the user in order to query the rule base. The figure shows rules 3 and 6 
having identical firing intensities but different risk values. This explains why in the 
ProRID main window (Figure 8.5) the cause associated with rule 3 is accompanied by 
the warning message for other possible fault cases. 

Figure 8.8 shows the ProRID decision window. The two upper panels give the results 
of the probability assessment and the cost trade-off described in Chapter 7. In addition 
to indicating the posterior fault probability according to Bayes’ Theorem, the system 
informs the user how many alarm signals were issued in a preset interval of measure-
ment cycles. At the point of detection, the maximum deviating quality characteristic, 
MP 18 was at 86 % of the tolerance field and is higher than the cost BEP designated to 
root cause 3, which was identified by the fault identification module. The bottom panel 
is intended for the user to query the set parameters corresponding to each fault case.  

If alarm is signaled and the fault is unknown, the result given in the main window is 
based on the triggered alarm signals (univariate and multivariate analysis) and the fault 
probability component only.  
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Figure 8.7: ProRID identification window  

Figure 8.8: ProRID decision window 
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8.4 Illustrative reuse scenario 

Before proceeding to the assessment of the developed system, its reuse is addressed in 
this section, i. e. its possible application to other manufacturing processes. A multi-
stage machining process shown in Figure 8.9 is considered for illustration purposes. 
The exemplary process, adapted from HUANG et al. 2000, consists of four machining 
operations followed by an EOL quality inspection station. The monitored quality char-
acteristics are listed in Table 8.1.

A~F: Indices of the datum planes of the cutting operations Op.: Operation                   Prod.: Product

Blank Op. 1 Op. 2 Op. 3 Op. 4 Prod.Blank Op. 1 Op. 2 Op. 3 Op. 4 Prod.Blank Op. 1 Op. 2 Op. 3 Op. 4 Prod.Prod.

Milling 

top 

surface

Drilling and 

boring

Milling 

oblique 

surface

Drilling

G H

A

B D

C

Datum: A+C+B Datum: D+C+B

Datum: A+C+B Datum: D+C+B

F

E

A~F: Datum planes

G, H: Holes

Figure 8.9: Exemplary multistage machining process [HUANG et al. 2000]  

Table 8.1: Quality characteristics (QC) in the illustrated example according to  

HUANG et al. 2000 

Label 
Quality characteristic

(Datum) 
Label 

Quality characteristic 

(Datum) 

QC_1 Height D (A) QC_6 Length of face D (B) 

QC_2 Parallelism D (A) QC_7 Diameter H 

QC_3 Diameter G QC_8 Y-pos. of hole H (C) 

QC_4 X-pos. of hole G (B) QC_9 Z-pos. of hole G (A) 

QC_5 Z-pos. of hole G (A) QC_10 Angularity of face F (A) 
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The first task after quality inspection is to investigate if unnatural patterns develop in 
successive measurement cycles. The application of the fault recognition module is 
straight forward in this case. Given that the quality characteristics follow a normal dis-
tribution, the same NN structure as designed in Chapter 5 can be directly implemented. 
Otherwise, the networks have to be retrained using process history or newly generated 
data. Applying similar monitoring conditions as described in Section 5.5.1.2, the rec-
ognition results described in Section 5.5.2 and Section 5.6 can be reproduced.  

To apply the fault identification module, a new knowledge base is required. The prod-
uct quality deviations in machining arise due to machining errors, fixturing errors and 
reorientation effects associated with datum change across operations. The datum refers 
to the reference plane(s) for the cutting operations. W.r.t. the described machining 
process, Table 8.2 presents sample diagnostic rules. In the sample, rules 1 and 2 are 
simple and involve direct identification of the root causes. Other rules (e. g. rule 5) 
capture the reorientation error in addition to the root cause. The conflict resolution 
strategy can be implemented for the machining case in the same manner as described 
for BIW. 

Similar to the recognition module, the decision module is directly applicable in this 
reuse scenario since similar governing conditions to the assembly process prevail. 
Both, Bayes’ Theorem and the developed cost model, can be adapted to the machining 
case provided that the required parameters can be determined.  

Now that the integration of all three modules has been discussed, the next section dis-
cusses the expected impact of such a diagnostic system in a production environment, 
especially in the BIW case, from a technical as well as an economical viewpoint.  

Table 8.2: Sample rules for the machining fault identification rule-base 

Rule If deviation is detected in  Then root cause is 

1 QC_1 OR QC_2 Op.1, fixturing error/ adjust fixture 

2 QC_4 OR QC_5  Op.2, fixturing error/ adjust fixture 

3 Op.3 fixturing error/ adjust fixture 

4
QC_6  

Op.3, machining error/ check tool  

5 QC_1 & (QC_5 OR QC_6) Op.1 datum error/ adjust fixture 

… … …
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9 Impact on production performance – An assessment 

9.1 Overview 

This chapter presents a brief discussion of the technical and economic advantages, 
drawbacks and further potentials of the proposed diagnostic system. The technical as-
sessment addresses common aspects of KBS implementation in production environ-
ments. The economic benefits are demonstrated in the terms of performance and prof-
itability.  

9.2 Technical assessment 

The discussion in this section concentrates on four general assessment criteria of CAx 
applications in manufacturing that are often quoted in the literature and implemented 
in the industry: time, quality, reuse and synergy [EIGNER & STELZER 2001]. The crite-
ria are addressed for the proposed system as compared to conventional inline meas-
urement systems. In addition, user acceptance is briefly discussed as an important as-
pect relating to the organizational feasibility of the KBS approach [KINGSTON 2004]. 
An assessment of the specific technical details of the system modules was integrated in 
chapters 5, 6 and 7 and is not included in this section.  

Time 

MÜLLER 2006 estimates the time lost in maintenance, fault recovery and parameter 
adjustments in weld robots at 10% of the total production time. The figure indicates 
the potential for increasing the production efficiency if earlier fault recognition can be 
achieved. To the same end, the presence of a fault knowledge base, which provides the 
user with instructions for suitable countermeasures, is an additional time-saving factor.  

On the contrary, the implementation of the system requires time for design and opera-
tion. In order to accurately quantify the required time, the knowledge base and pa-
rameter identification for cost and probability models must be integrated in a new ve-
hicle launch project. However, the implementation time is expected to decrease with 
repeated implementation in compliance to common learning curves. 

Quality

The focus of the thesis was to achieve stable quality levels through modeling the 
knowledge and the actions of the human expert. It was not attempted to achieve higher 
product quality in the sense of decreased tolerance fields or reactive mechanisms that 
affect the process. Thus, from a conservative viewpoint, the system does not contribute 
to higher product quality levels. Nevertheless, timely adjustment of the process leads 
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to more consistent product characteristics. Also, considering the quality and the or-
ganization of the production process and not the product quality, savings as high as 2-
5% of the sales volume are estimated [RUDOLF 2007]. These savings result from pre-
vented faults, reduced rework and improved maintenance plans. 

Reuse and expandability 

The fault recognition module and the decision module are generally applicable to vari-
ous production scenarios in their presented form. The main concern when addressing 
reuse lies rather in the components of the fault identification module: the knowledge 
base and the inference engine. Here, these three aspects have to be examined sepa-
rately:  

Reuse for similar BIW assembly processes 

Reuse for other multistage manufacturing processes, such as machining or stamp-
ing operations 

Expandability of the system inputs and outputs  

As discussed earlier, in BIW assembly of a family of vehicle models, the production 
lines have similar layouts. This implies that the diagnostic rules can be reimplemented 
but with an associated adjustment effort that varies inversely with the degree of simi-
larity in process layout. Accordingly, when compared to a conventional BIW inline 
measurement station, the proposed system scores less on a reuse scale. The same ar-
gument is valid for reuse in the context of other manufacturing processes. 

The third aspect refers to including process parameters in addition to the EOL meas-
urement results in the fault analysis procedure. This represents an interesting develop-
ment of the proposed system. As such, the system can be expanded to function as a 
supervisory process controller that reacts not only in normal operation (classical con-
trol) but also in the case of faults (fault-adaptive control). The implementation of such 
process adaptive techniques allows larger tolerance fields and more relaxed quality 
specifications of the upstream processes [MÜLLER 2006]. This, in turn, translates di-
rectly into reduced production costs. 

In its extended form, the system inputs in BIW may incorporate monitoring of the spot 
welding process, robot position signals as well as optically captured fixture and part 
positions [EICHHORN 2005]. Similarly, in a machining scenario, input signals such as 
vibration and acoustic emission levels, electric drive current and spindle temperature 
can be included in the rule base conditions. The output signals of such a supervisory 
controller may allow automatic recovery if proper process interfaces are available. For 
the time being, however, the economic feasibility of automatic fault recovery in BIW 
is not given. 
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Synergy

Synergy refers to the indirect advantages of the presented approach that can be at-
tained in different stages of the product lifecycle. Such additional benefits are expected 
mainly in the contexts of virtual ramp-up and management execution systems (MES). 

Virtual ramp-up is widely practiced in the design phases of many manufacturing facili-
ties [MIN et al. 2002, ZÄH et al. 2004]. It refers to the simulation of different process 
aspects such as PLC-architectures, controller codes and collision before or in parallel 
to hardware installations. The simulation of product quality and process capability is 
also proposed as part of a virtual ramp-up [LANZA 2005, LANZA et al. 2006]. Integrat-
ing the knowledge acquisition phase as described in Section 6.2 into virtual ramp-up 
procedures promises early and consistent knowledge management w.r.t. modeled fault 
patterns as well as to process heuristics. Casting this knowledge into a software tool 
guarantees proper storage and availability of quality planning results to the operation 
personnel. Early access to fault knowledge can be highly beneficial, especially in the 
light of the fact that 70 % of the geometry faults in the launch phase of new vehicle 
models is attributed to fixture failure [HU 1997]. 

The functions of the developed software prototype (Section 8.3) can be integrated in 
standard MES or SCADA architectures easily. In this way, no additional infrastructure 
is needed and the communication between different fault analysis stations, process 
engineers and management is supported. 

Acceptance

The acceptance and the support of all stakeholders are crucial for a successful imple-
mentation of a KBS. KBS stakeholders include management, developers, experts and 
users. The first two groups have obvious interest in the success of the KBS. The hu-
man expert must be dealt with tactfully and must be allowed to have the upper hand at 
all times [KINGSTON 2004].  

KBS application is generally subject to negative stereotypes, mainly among the users 
or the operation personnel. They are assigned the task of working with a new system, 
which is considered inconvenient, and are often skeptical of the outcome. The social 
impact of implementing KBS is not limited to its launch only. For example, repeated 
user override may lead to loss of confidence in the system. Also, other issues have to 
be clear as early as possible, such as who is responsible for the maintenance of the 
KBS and how it would not lead to long-term deskilling of the workers [DYM & LEVITT

1991].

Figure 9.1 summarizes the technical assessment. 
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Figure 9.1: Qualitative comparison between the proposed system and a conven-

tional inline measurement system in BIW assembly  

9.3 Economic assessment 

It is generally difficult to isolate the share of quality-related costs of an activity since 
cost targets are usually affected by the interaction of several activities and decisions 
[MASING 1988]. A look at the aspect of synergy described in the previous section 
gives an idea how intricate these activities may be. Quality costs cross department 
lines by involving all actions of the company. Consequently, it is difficult to estimate 
the quality costs25 of a product unit [GEIGER 1994]. GEIGER 1994 attributes some 
negative as well as positive consequences to the special nature of quality costs. One 
negative consequence is that quality costs cannot be represented on a balance sheet 
from an accounting point of view. Another negative effect is seen in some company 
performance reports where the term quality is avoided and replaced by more general 
concepts such as total quality management. A positive consequence, however, is that 
the rough estimation of quality costs is satisfactory in industrial practices. Hence, the 
following discussion of the economic value of the proposed system is mostly qualita-
tive in nature. 

25 The quality costs in this context extend to a company-wide cost viewpoint as compared to the local PAF mo-
del used in Chapter  7.  
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PAF cost analysis

The PAF quality cost model (Section 7.3.2.1) is a generally acknowledged tool for 
estimating quality costs. For most companies 5% of the quality costs are spent on pre-
vention. 95% of the quality costs are expended on failure and appraisal that add no 
value to the product [JURAN & GYRNA 1988, HERING et al. 1994, GUH & O'BRIEN

1999]. Increasing expenditure on prevention can reduce the overall quality costs by 
30-50% (Figure 9.2) [TANGRAM TECHNOLOGY 2005]. Depending on the application 
field, this may be equivalent to a profit increase of approximately 50%. 

Increase in 
prevention costs

Increase in 
appraisal costs

Decrease in 
failure costs

Failure

Appraisal

Prevention

Failure

Appraisal

Prevention

Improvement

Cost

Figure 9.2: Cost reduction through reallocation of resources  

(qualitative representation) 

Cost-benefit analysis of CAQ applications

Figure 9.3 illustrates a simplified cost-benefit balance for CAQ applications. The re-
quired initial hardware costs of the KBS are relatively low since the system consists 
mainly of software modules that can be annexed to inline measurement systems or, if 
available, to MES. The initial software costs, especially for the development of the 
rule base, are comparably high. The main cost contributor in this regard is the man-
power and the required validation of the rule base. Staff training is necessary to over-
come the aforementioned social and technical barriers of KBS application. The main 
work load associated with developing and maintaining the rule base lies on the quality 
planners assisted by the operational quality staff. 

The following figures serve as monetary indicators of the expected benefit of a knowl-
edge-based diagnostic system in the BIW manufacturing facility described in Chap-
ter 3. Eliminating one manual rework station means a saving of approximately 
230,000 € of the initial investment at current market prices. Eliminating one minute of 
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the average rework time per produced vehicle corresponds to annual savings of ap-
proximately 180,000 €. The savings may not seem significant compared to the total 
production budget, but adding other benefits such as the opportunity for increased pro-
ductivity and better planning of maintenance, repair and overhaul activities, the pro-
posed system represents a strategically important and justifiable investment.  

BenefitCost

Initial costs

• Hardware / Software

• Development

• Training

• Implementation

• Less defects

• Shorter throughput time

• More information

• Quicker analysis

• Better process control

• Reduced risk

• Better documentation

• Higher profit

• Better corporate image

Running costs

• Operation

• Service

• Continuous improvement

CAQCAQCAQ

Figure 9.3: Simplified cost-benefit analysis of CAQ applications  

[HERING et al. 1994] 

Impact on business performance

Over the years, rapid technical advances and technology mergers have resulted in con-
tinuous sophistication and improvements in the price-performance ratio of IT applica-
tions [VENKATRAMAN & ZAHEER 1990]. The improvement can be cast in terms of the 
relative prices of capital and labor, i. e. the ratio of the cost of a technology to the cost 
of labor. Over a period of thirty years, BENJAMIN et al. 1984 found that for products 
such as passenger vehicles and production machinery, the ratio improved at approxi-
mately two times per decade, i. e. a decrease in the price-performance of capital versus 
labor. In contrast, over the same period, the performance of the IT industry has shown 
an improvement of as much as twenty-five times. These developments make it possi-
ble to utilize IT-based applications at a fraction of the costs that would have been a 
few years before.  
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The following quote from a Frost & Sullivan26 strategic report [FROST & SULLIVAN

2005] indicates the sustainability of the trend in the IT industry. The report focused on 
a number of European manufacturers and covered a variety of industrial sectors in-
cluding the automotive industry.  

“Increasing cost of raw materials along with competition from low-cost producers … 

has driven plant modernization and forced European manufacturers to cut costs. … 

The net effect should see continued investment in automation and control solutions … 

as these systems are vital in achieving production synergies and eliminating costs in 

the manufacturing process.” 

26 Frost & Sullivan Ltd., San Antonio, TX, USA <www.frost.com> 
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10 Summary and future research  

Quality is a key element to long run success of engineering businesses [ONO & NE-

GORO 1992, KONDO 1995]. In many industries, 100% monitoring has become an es-
tablished quality inspection strategy that saves valuable time when reacting to faults. It 
reduces risks and guarantees customer satisfaction by eliminating all defects. How-
ever, monitoring techniques are not capable of diagnosing faults or suggesting recov-
ery actions. The latter aspect depends heavily on human experience in analyzing faults 
and conducting proper process adjustments in an economical way that contributes to 
improved profitability.  

The outset of the thesis identified some disadvantages in current quality control prac-
tices in manufacturing facilities. A field study in the automotive industry showed that 
the analysis of quality defects and the elimination of their root causes is an underesti-
mated task that exploits considerable resources. In many industrial applications, moni-
toring capabilities are restricted to the use of alarm thresholds. Also, the process of 
fault analysis is highly subjective as it depends on human expert judgment. In addition 
to the complex nature of quality problems in BIW production, organizational aspects 
such as staff rotations and sparing fault documentation add to the difficulty of the task. 
The problem, thus, boils down to the way process knowledge is implemented in pro-
duction operations, especially when related to quality and fault troubleshooting issues.  

Based on the results of a field study and a literature survey, the objective of the thesis 
was to investigate the need, the architecture and the development of a KBS for fault 
diagnosis and decision support in online quality control of manufacturing processes 
with the example of BIW assembly. The developed system targets the reduction of 
fault analysis time while increasing the certainty of the fault analysis. The fault knowl-
edge base thus stores human expertise in quantifiable form and offers an approach to 
automated fault documentation. For this purpose, the proposed approach breaks down 
the diagnosis problem into three modules each performing two major tasks.  

The fault recognition module examines the monitored quality characteristics for uni-
variate and multivariate unnatural patterns such as mean shifts and trends or correla-
tions. The NN-based module reached an overall univariate recognition certainty of 
93.2 %. Error type I and type II were 1 % and 5.2 %, respectively. The multivariate 
analysis relies on the results of the univariate stage and uses several consecutive 
bivariate comparison steps to determine correlations in the quality characteristics. The 
introduced concept outperformed the conventional linear correlation coefficient and 
achieved an overall certainty of 94.3%. The concept represents a robust alternative that 
can be extended without further changes to include further patterns of linearly and 
nonlinearly correlating characteristics. 

The fault recognition module addresses the localization of fault root causes upon the 
recognition of quality defects. The module contains a fault knowledge base, where the 
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knowledge structure is adapted from a FMEA and is stored in rule form. For the rule 
base design, general-purpose and specific-purpose knowledge acquisition tools were 
necessary. The premise of the formulated rules described the measurement vector as 
obtained from the inspection station for a certain quality nonconformance pattern. The 
consequent part described possible root causes and provided a quantification of the 
associated risk and probability. A fuzzy inference engine was designed to infer the 
final decision on the root cause. Moreover, a conflict resolution strategy was devel-
oped that implements a risk criterion to enhance fault diagnosability. It could be shown 
that the rule base and the fuzzy inference engine are capable of capturing the expert 
knowledge in BIW in an intuitive and practical way. The rule base can be reimple-
mented for similar assembly lines and extended to include process parameters in addi-
tion to the quality characteristics in the rule premise. 

The third module, the decision module, relates the decision of adjusting the process to 
the fault conditional probability and the associated cost of poor quality. The condi-
tional fault probability is calculated through Bayes’ Theorem making use of the con-
secutive alarm signals issued by the fault recognition module. The second criterion 
assesses the process economics in the case of a fault by modeling a cost trade-off be-
tween the incurred quality loss as defined by Taguchi and the fault recovery costs. 
Practical examples illustrated the validity of the theoretical assumptions for real-world 
application.

The three modules were integrated in a software prototype (ProRID). An experimental 
setup was realized for testing the developed software and its interface to the measure-
ment system. Additionally, the reuse aspect of the developed system was discussed for 
an arbitrary machining process. 

Compared to conventional inline measurement systems, the proposed KBS promises 
higher productivity and efficiency through earlier alarms and reliable decision support 
in the case of quality defects. The effect is targeted through increasing investments in 
the fault prevention area while expecting a larger decrease in failure costs, such as 
costs due to delayed reaction and analysis time. The synergy between the fault KBS 
and MES or SCADA systems offers advantages w.r.t. the integration with existing IT 
infrastructure and the initial hardware costs.  

Two major research directions are suggested for the future development of the pro-
posed diagnostic KBS. The first direction is the extension of the system capabilities to 
match online supervisory control systems. As such, process control even in the pres-
ence of minor faults would be possible. In the same line, research in the area of sensor 
networks complementary to EOL measurement is of great value to enhance the ob-
servability and the controllability of the production process. Related research results 
are already available on related topics such as sensor location optimization [KHAN & 
CEGLAREK 1998, LIU & DING 2005] and the design of sensor networks [DING et al. 
2003, ZORRIASSATINE et al. 2003]. 
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The second direction is the cross-functional information and knowledge sharing along 
the complete production cycle. The concept is represented schematically in Figure 
10.1 for the automotive industry. Through forward and backward information flow 
between distributed quality gates, the product quality characteristics can be controlled 
more efficiently and economically. This in turn would reduce production costs, since 
better control of the process will allow for the implementation of larger geometrical 
tolerances.

Addition of tolerances and fault effects from stamped parts up to the complete vehicle

Information-feedback from the quality inspection systems for process adjustment and optimization

Addition of tolerances and fault effects from stamped parts up to the complete vehicle

Information-feedback from the quality inspection systems for process adjustment and optimization

Paint 
shop

Body-in-whitePress shop
Final 

assembly
Paint 
shop

Body-in-whitePress shop
Final 

assembly

Figure 10.1: Forward and backward information flow from the geometrical  

measurement stations in the production cycle of a vehicle27

27 Courtesy of Perceptron GmbH 
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BMW

Bayerische Motoren Werke  
Aktiengesellschaft 

Munich, Germany 

www.bmwgroup.com 

www.bmw.de 

www.bmw-werk-regensburg.de 

Frost and Sullivan

Frost and Sullivan Ltd. 

San Antonio, TX, USA  

www.frost.com 

KUKA

KUKA Roboter GmbH 

Augsburg, Germany 

www.kuka.com 

Perceptron

Perceptron, Inc. 

Plymouth, MI, USA  

Perceptron GmbH 

Munich, Germany 

www.perceptron.com 

Straatum

The Straatum Group 

Dublin, Ireland 

www.straatum.com 
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12.2 Some fundamentals of neural networks28

Definition 

The development of artificial neural networks, commonly referred to as neural net-
works (NN) has been motivated by the acknowledgment that the human brain com-
putes in an entirely different way from the conventional digital computer. The brain is 
a highly complex, nonlinear, and parallel computer and NN are mathematical models 
of theorized brain activity. A commonly cited definition of NN states that: 

“A neural network is a massively parallel distributed processor made up of simple 

interconnected processing units, known as neurons, which has a natural propensity for 

storing experiential knowledge and making it available for use. It resembles the brain 

in two respects: 

Knowledge is acquired by the network from its environment through a learning 

process.

Interneuron connection strengths, known as synaptic weights, are used to store 

the acquired knowledge.” 

In this regard a learning algorithm performs the learning process and modifies the syn-
aptic weights of the NN to attain a design objective. Another less traditional practice in 
the design of NN is the modification of the network topology, which is inspired by the 
fact that brain cells may die and new synaptic connections can grow.  

Benefits 

NN derive their computational power from their parallel structures and their ability to 
learn and generalize. Generalization refers to the NN producing reasonable outputs for 
inputs not encountered during training (learning). NN are capable of solving large-
scale problems that are otherwise intractable. The application of NN offers a number 
of benefits, the foremost of which are nonlinearity, input-output mapping, and adaptiv-
ity. A NN is nonlinear if it is made up of an interconnection of nonlinear neurons. 
Nonlinearity is imperative when modeling phenomena or systems that are inherently 
nonlinear, such as in speech recognition applications. Input-output mapping refers to 
the viewpoint of a NN as a nonparametric or a model-free estimator. The NN uses 
training samples to modify its synaptic weights – free parameters – in order to mini-
mize the difference between the desired output corresponding to a certain input and the 
actual output delivered by the network for the same input. The third beneficial aspect 
of NN is adaptivity. NN are capable of adapting their synaptic weights (retraining) to 

28 This section is based largely on HAYKIN 1999.
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changes in the surrounding environment. The NN is superior when dealing with non-
stationary operating conditions in signal processing and control applications.  

The neuron

The main structural constituent of the NN is a neuron. The block diagram in Figure 
12.1 shows the model of a neuron where three basic elements can be identified: 

The synapses or the connecting links, which are characterized by weights or con-
nection strengths.  

The adder or the summing junction, which combines all inputs to the neuron in a 
linear or a nonlinear manner. 

The activation function, which limits the amplitude of the neuron output. The 
output of a neuron typically assumes a value in the interval [-1,1]. 

An optional element in the neuron model is the bias, which may be applied to increase 
or lower the net input of the activation function. The neuron k is described mathemati-
cally by the following two equations: 

m

0j
jkik xwv  (12.1) 

)v(fy kk  (12.2) 

where:

f(·): activation function 

vk: induced local field or activation potential of neuron k 

wk0: bias of neuron k 

wki: connection weight from neuron i to neuron k 

x0: unit input to account for the bias 

xi: input signal from neuron i to neuron k 

yk: output signal of neuron k 

The activation function, denoted by f(·), defines the output of the neuron in terms of its 
induced local field v. The basic types of activation functions include the threshold 
function, the linear function and the sigmoid function. The threshold function, known 
in engineering applications as the Heaviside function describes the all-or-none pro-
perty of the model. The piecewise linear function is an approximation to a nonlinear 
amplifier. The sigmoid function is the most widely used in NN applications and is de-
scribed as an s-shaped, strictly increasing function that balances between linear and 
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nonlinear behavior. Table 12.1 gives the mathematical expressions corresponding to 
these three types of activation functions. 

Table 12.1: Examples of the activation function 

Threshold function Piecewise linear function Logistic sigmoid function 
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Figure 12.1: Model of a neuron 

Topology

In general, a layered NN may have one of three fundamentally different topologies: 

Single-layer feedforward networks 

The simplest form of layered NN is the single-layer NN.  
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Multilayer feedforward networks 

A layer that receives signals from the environment is called an input layer and a 
layer that emits signals to the environment is an output layer. Any layer in  
between is called a hidden layer. By adding the hidden neurons, the network is 
capable of capturing higher order models and statistics. This feature is espe-
cially critical if the size of the input vector is large. 

Recurrent networks

In contrast to feedforward network structures, a recurrent NN contains at least 
one feedback loop. In this topology, a neuron can feed back its output signal to 
neurons of preceding layers, to neurons of the same layer (intra-layer), or to it-
self (self-feedback). Recurrent NN may consist of one or more layers. 

In all three topologies the NN may be fully or partially connected. The latter refers to 
the situation when some synapses are excluded in the network design. This is equiva-
lent to assigning a synaptic weight of zero to a connection. Figure 12.2 depicts a three-
layer fully connected feedforward NN. 

Input 
layer

Hidden 
layer

Output 
layer

Input
data

Output 
results

Figure 12.2: Topology of a multilayer feedforward NN with three layers 

Learning

Learning in the context of NN may be defined as: 

“Learning is a process by which the free parameters of a neural network are adapted 

through a process of simulation by the environment in which the network is embedded. 

The type of learning is determined by the manner in which the parameter changes take 

place.”
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The set of well-defined rules for the solution of the learning problem is called a learn-

ing algorithm or learning rule. The topology of a NN is intimately linked with the 
learning algorithm used to train the network. However, there is no unique training al-
gorithm for a certain NN. Learning algorithms differ from each other in the way the 
synaptic weights are adjusted and the way the NN relates to its environment (learning 

paradigm). 

The most widely used learning algorithms represent either direct applications or de-
rivatives of five basic learning algorithms: error-correction learning, memory-based 
learning, Hebbian learning, competitive learning, and Boltzmann learning. Error-
correction learning is an optimum filtering technique. Memory-based learning memo-
rizes the training data explicitly. Hebbian learning and competitive learning implement 
concepts rooted in neurobiology, where, for example, more active synapses are re-
warded with higher credits or weights. Boltzmann learning implements ideas borrowed 
from statistical mechanics. To provide a brief insight into NN learning mechanisms, 
the error-correction learning is described in the next section. 

Two fundamental learning paradigms prevail in NN applications: learning with a 
teacher and learning without a teacher. The concept of learning with a teacher, also 
referred to as supervised learning, is illustrated in Figure 12.3. Here, the teacher pro-
vides the learning system, which is a NN in this case, with data pairs of input vectors 
and their corresponding desired outputs. The learning system adapts its parameters in 
order to minimize the deviation between the desired and the actual response. On the 
contrary, learning without a teacher, there is no teacher to oversee the learning process. 
The two subdivisions of this paradigm are reinforcement learning and unsupervised 
learning (Figure 12.4). In reinforcement learning, a critic evaluates the performance of 
the learning system in relation to the environment. The evaluation results are imple-
mented to adjust the learning system through predefined mechanisms, such as cost 
functions. The unsupervised or self-organized learning includes neither a teacher nor a 
critic. The network parameters are rather optimized with respect to a task independent 
measure. Regardless of the presence of a teacher, the learning process can be con-
ducted before the actual implementation of the NN (offline) or during operation 
(online).



12.2 Some fundamentals of neural networks 

 177

Teacher

Learning
system

Error signal

Actual
response

Desired
response

State (input) 
vector

+
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Environment

Figure 12.3: Learning with a teacher (supervised learning) 
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State (input) 
vector
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Figure 12.4: Two paradigms for learning without a teacher: (a) reinforcement  

learning and (b) unsupervised learning 

Error-correction learning

Consider a feedforward NN with a single neuron in its output layer, denoted k. The 
error e is defined as the difference between the desired output d  and the actual output 
y and is given by Equation 12.3 as follows: 

)n(y)n(d)n(e kkk  (12.3) 
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where n denotes discrete time or the time step of the iterative process of adjusting the 
synaptic weights of neuron k. The error signal actuates a control mechanism, which 
adjusts the synaptic weights of the neuron in order to minimize a given cost function in 
a step-by-step manner. The cost function E is defined in terms of the error as: 

)n(e
2

1
)n(E 2

kk  (12.4) 

Thus, E represents the instantaneous value of the error energy. The adjustment is iter-
ated until the weights have reached a steady state or met a predefined threshold. 

Let wkj denote the synaptic weight of the neuron k excited by xj, which represents an 
element of the input vector to the neuron x(n). Thus, the adjustment wkj applied to 
the weight wkj at time step n is:  

)n(x)n(e)n(w jkkj  (12.5) 

where  is a positive constant that determines the learning rate. Equation 12.5 de-
scribes the learning rule known as the delta rule, which may be stated as:  

“The adjustment made to a synaptic weight of a neuron is proportional to the product 

of the error signal and the input signal of the synapse in question.” 

The updated weight of the synapse is determined by:  

 )n(w)n(w)1n(w kjkjkj  (12.6) 

As such, the error-correction learning is an example of a closed-loop feedback system 
working locally in the vicinity of a neuron. The stability and the performance of the 
algorithm are governed by its parameters, especially the learning rate. The learning-
rate parameter  must be carefully chosen to ensure the convergence and the accuracy 
of the algorithm 

Backpropagation training for multilayer feedforward neural networks (MFNN)

MFNN are an important class of NN that finds vast practical application. In these net-
works, the input signal propagates through the network in a forward direction, on a 
layer-by-layer basis. MFNN have been applied successfully to solve complex real-life 
problems in many application domains. In particular, the supervised training of MFNN 
with the highly popular algorithm known as the error backpropagation algorithm is 
reported to be a superb technique.  

The error backpropagation algorithm or simply backpropagation (BP) is based on the 
error-correction learning. It basically consists of two passes through the layers of the 
NN: a forward pass and a backward pass. In the forward pass, an input vector is ap-
plied to the input nodes of the network, and its effect propagates through the network, 
layer by layer. A set of outputs is produced as the actual response of the network. Dur-
ing the forward pass the synaptic weights of the network are all fixed. Next, an error 
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signal, defined as the difference between the actual response of the network and a de-
sired response, is propagated backward through the network, against the direction of 
synaptic connections. The synaptic weights are adjusted so as to make the actual net-
work response closer to the desired response of the network. This scheme of weight 
adjustment repeats many times until the weights no longer change, a condition referred 
to as convergence of the learning algorithm. 

There are two ways (or modes) to adjust the weights using backpropagation. One ap-
proach, the pattern mode, adjusts the weights based on the error signal of one input 
output pair in the training data. Thus, these adjustments are made immediately after 
each training datum is fed into the neural network. The other approach, referred to as 
batch or epoch mode of backpropagation learning, adjusts weights based on the error 
signal of the entire training set. Therefore, weights are adjusted once only after all the 
training data have been processed by the neural network. The gradient descent method 
is used to minimize the error between the actual and desired network outputs of the 
entire training set. The next section provides a mathematical description of the pattern 
BP algorithm applied to an arbitrary neuron in the output layer. 

Backpropagation algorithm

Pattern-by-pattern backpropagation learning applies the gradient descent method to a 
cost function representing the error energy. The total instantaneous error energy E(n) 
over the set C containing all neurons of the output layer of a MFNN is given by 

Cj

2
j )n(e

2

1
)n(E  (12.7) 

Consider a neuron j in the output layer being fed by m input signals from the layer to 
its left. The induced local field is given by: 

m

0i
ijij )n(y)n(w)n(v  (12.8) 

Hence, the output of neuron j is: 

))n(v(f)n(y jjj  (12.9) 

The backpropagation algorithm applies corrections to the synaptic weights wji(n)

proportional to the partial derivative 
)n(w

)n(E

ji

, which is a sensitivity factor determining 

the direction of search in weight space for the synaptic weights. Using the chain rule, 
the derivative can be written as follows:  
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 (12.10) 
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By differentiating Equation 12.7 with respect to ej(n):

)n(e
)n(e

)n(E
j

j

 (12.11) 

Similarly, differentiating Equation 12.3 with respect to ej(n):

1
)n(y

)n(e

j

j  (12.12) 

Next, differentiating Equation 12.9 with respect to vj(n):

))n(v(f
)n(v
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j

j

j  (12.13) 

Finally, differentiating Equation 12.8 with respect to wji(n):

)n(y
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)n(v
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j  (12.14) 

Consider the delta rule: 

)n(w

)n(E
)n(w

ji
ji  (12.15) 

where  is the learning-rate parameter and minus sign accounts for gradient descent. 
Substituting Equations 12.10 through 12.14 into the delta rule:  

)n(y)n()n(w ijji  (12.16) 

where )n(j  is the local gradient defined as: 
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 (12.17) 

Once the local gradient is calculated for the output neuron j, the required change in the 
synaptic weights can be determined. The calculation of synaptic weight changes in 
hidden neurons follows the same concept. In this case the error signal of the hidden 
neuron has to be determined recursively in terms of the error signals of the neurons it 
abuts in the neighboring layer nearer to the output layer.  
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12.3 Some fundamentals of fuzzy math 

Fuzzy sets 

Fuzzy set theory generalizes the classical set theory to allow partial membership. A set 
in classical set theory always has a sharp boundary; an object either completely be-
longs to the set or does not belong to the set at all. A fuzzy set is a set with a smooth 
boundary. The degree of membership in a set is expressed by a number between 0 and 
1; 0 means entirely not in the set, 1 means entirely in the set, and a number in between 
means partially in the set. A fuzzy set is thus defined by a function that maps objects in 
a domain of concern to their membership value in the set. Such a function is called a 
membership function denoted µ. 

A fuzzy set is often associated with a linguistically meaningful term. The use of a lin-
guistic variable offers two important benefits. Firstly, it is easier for a human expert to 
express his knowledge in linguistic terms. Secondly, knowledge expressed in linguistic 
terms is easily comprehensible and transferable, thus resulting in significant savings in 
the design and maintenance costs of a fuzzy logic system. 

Membership functions

A membership function provides gradual transition from regions completely outside a 
set to regions completely in the set. The membership function can have an arbitrary 
shape determined by setting a number of parameters depending upon the chosen shape. 
Among the most common membership functions used in practice are triangular and 
trapezoid. Other types of membership functions include bell curves, Gaussian, and 
sigmoidal functions. The triangular membership function (Figure 12.5) can be de-
scribed mathematically by the following equation. 

cx0

cxb
bc

xc

bxa
ab

ax

ax0

)c,b,a:x(triangle  (12.18) 
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a

1

b c
x

µ

Figure 12.5: Triangular membership function 

Basic operations on fuzzy sets

The fundamental operations in classical sets are union, intersection, and complement. 
The union of two sets A and B (denoted BA ) is the collection of those objects that 
belong to either A and B. The intersection of A and B (denoted BA ) is the collec-
tion of those objects that belong to both A and B. The complement of a set A (denoted 
A ) is the collection of objects not belonging to A. 

Since membership in fuzzy sets is a matter of degree, set operations should be general-
ized accordingly. Union, intersection, and complement operations in fuzzy set theory 
are similar to conjunction, disjunction, and negation in logic. Common fuzzy disjunc-
tion operators include the maximum operator and algebraic sum. 

)}x(),x(max{)x( BABA  (12.19) 

 )x()x()x()x()x( BABABA  (12.20) 

Common fuzzy conjunction operators include the minimum operator and the algebraic 
product.

)}x(),x(min{)x( BABA  (12.21) 

)x()x()x( BABA  (12.22) 

The complement of a fuzzy set reflects negation. The compliment of the fuzzy set A 
can be defined by the difference between one and the membership degree in A:  

)x(1)x( AA
 (12.23) 

It is important to notice that the choice of a fuzzy conjunction operator determines the 
choice of the fuzzy disjunction operator, and vice versa. This is due to the principle of 
duality between the two operators. A fuzzy conjunction operator, denoted t(x,y) (trian-
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gular norm) and a fuzzy disjunction operator, denoted s(x,y) (triangular co-norm), 
form a dual pair if they satisfy the following condition: 

)y1,x1(s)y,x(t1  (12.24) 

Thus, the duality condition ensures that De Morgan’s laws  

BABA  (12.25) 

BABA  (12.26) 

hold in the fuzzy set theory. Minimum and maximum operators or algebraic product 
and algebraic sum operators form a typical pair of t-norms and s-norms.  
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1 Innovative Montagesysteme - Anlagengestaltung, -bewertung

und -überwachung

115 Seiten · ISBN 3-931327-01-9

2 Integriertes Produktmodell - Von der Idee zum fertigen Produkt

82 Seiten · ISBN 3-931327-02-7

3 Konstruktion von Werkzeugmaschinen - Berechnung, Simulation 

und Optimierung

110 Seiten · ISBN 3-931327-03-5

4 Simulation - Einsatzmöglichkeiten und Erfahrungsberichte

134 Seiten · ISBN 3-931327-04-3

5 Optimierung der Kooperation in der Produktentwicklung

95 Seiten · ISBN 3-931327-05-1

6 Materialbearbeitung mit Laser · von der Planung zur Anwendung

86 Seiten · ISBN 3-931327-76-0

7 Dynamisches Verhalten von Werkzeugmaschinen

80 Seiten · ISBN 3-931327-77-9

8 Qualitätsmanagement · der Weg ist das Ziel

130 Seiten · ISBN 3-931327-78-7

9 Installationstechnik an Werkzeugmaschinen · Analysen und Konzepte

120 Seiten · ISBN 3-931327-79-5

10 3D-Simulation - Schneller, sicherer und kostengünstiger zum Ziel

90 Seiten · ISBN 3-931327-10-8

11 Unternehmensorganisation - Schlüssel für eine effiziente Produktion

110 Seiten · ISBN 3-931327-11-6

12 Autonome Produktionssysteme

100 Seiten · ISBN 3-931327-12-4

13 Planung von Montageanlagen

130 Seiten · ISBN 3-931327-13-2

14 Nicht erschienen – wird nicht erscheinen

15 Flexible fluide Kleb/Dichtstoffe · Dosierung und Prozeßgestaltung

80 Seiten · ISBN 3-931327-15-9

16 Time to Market - Von der Idee zum Produktionsstart

80 Seiten · ISBN 3-931327-16-7

17 Industriekeramik in Forschung und Praxis - Probleme, Analysen 

und Lösungen

80 Seiten · ISBN 3-931327-17-5

18 Das Unternehmen im Internet - Chancen für produzierende 

Unternehmen

165 Seiten · ISBN 3-931327-18-3

19 Leittechnik und Informationslogistik - mehr Transparenz in der 

Fertigung

85 Seiten · ISBN 3-931327-19-1

20 Dezentrale Steuerungen in Produktionsanlagen - Plug & Play - 

Vereinfachung von Entwicklung und Inbetriebnahme

105 Seiten · ISBN 3-931327-20-5

21 Rapid Prototyping - Rapid Tooling - Schnell zu funktionalen 

Prototypen

95 Seiten · ISBN 3-931327-21-3

22 Mikrotechnik für die Produktion - Greifbare Produkte und 

Anwendungspotentiale

95 Seiten · ISBN 3-931327-22-1

24 EDM Engineering Data Management

195 Seiten · ISBN 3-931327-24-8

25 Rationelle Nutzung der Simulationstechnik - Entwicklungstrends 

und Praxisbeispiele

152 Seiten · ISBN 3-931327-25-6

26 Alternative Dichtungssysteme - Konzepte zur Dichtungsmontage und 

zum Dichtmittelauftrag

110 Seiten · ISBN 3-931327-26-4

27 Rapid Prototyping · Mit neuen Technologien schnell vom Entwurf 

zum Serienprodukt

111 Seiten · ISBN 3-931327-27-2

28 Rapid Tooling · Mit neuen Technologien schnell vom Entwurf zum 

Serienprodukt

154 Seiten · ISBN 3-931327-28-0

29 Installationstechnik an Werkzeugmaschinen · Abschlußseminar

156 Seiten · ISBN 3-931327-29-9

30 Nicht erschienen – wird nicht erscheinen

31 Engineering Data Management (EDM) · Erfahrungsberichte und 

Trends

183 Seiten · ISBN 3-931327-31-0

32 Nicht erschienen – wird nicht erscheinen

33 3D-CAD · Mehr als nur eine dritte Dimension

181 Seiten · ISBN 3-931327-33-7

34 Laser in der Produktion · Technologische Randbedingungen für 

den wirtschaftlichen Einsatz

102 Seiten · ISBN 3-931327-34-5

35 Ablaufsimulation · Anlagen effizient und sicher planen und betreiben

129 Seiten · ISBN 3-931327-35-3

36 Moderne Methoden zur Montageplanung · Schlüssel für eine 

effiziente Produktion

124 Seiten · ISBN 3-931327-36-1

37 Wettbewerbsfaktor Verfügbarkeit · Produktivitätsteigerung 

durch technische und organisatorische Ansätze

95 Seiten · ISBN 3-931327-37-X

38 Rapid Prototyping · Effizienter Einsatz von Modellen in der 

Produktentwicklung

128 Seiten · ISBN 3-931327-38-8

39 Rapid Tooling · Neue Strategien für den Werkzeug- und Formenbau

130 Seiten · ISBN 3-931327-39-6

40 Erfolgreich kooperieren in der produzierenden Industrie · Flexibler 

und schneller mit modernen Kooperationen

160 Seiten · ISBN 3-931327-40-X

41 Innovative Entwicklung von Produktionsmaschinen

146 Seiten · ISBN 3-89675-041-0

42 Stückzahlflexible Montagesysteme

139 Seiten · ISBN 3-89675-042-9

43 Produktivität und Verfügbarkeit · ...durch Kooperation steigern

120 Seiten · ISBN 3-89675-043-7

44 Automatisierte Mikromontage · Handhaben und Positionieren 

von Mikrobauteilen

125 Seiten · ISBN 3-89675-044-5

45 Produzieren in Netzwerken · Lösungsansätze, Methoden, 

Praxisbeispiele

173 Seiten · ISBN 3-89675-045-3

46 Virtuelle Produktion · Ablaufsimulation

108 Seiten · ISBN 3-89675-046-1

Seminarberichte iwb

herausgegeben von Prof. Dr.-Ing. Gunther Reinhart und Prof. Dr.-Ing. Michael Zäh,

Institut für Werkzeugmaschinen und Betriebswissenschaften

der Technischen Universität München

Seminarberichte iwb sind erhältlich im Buchhandel oder beim

Herbert Utz Verlag, München, Fax 089-277791-01, info@utz.de



47 Virtuelle Produktion · Prozeß- und Produktsimulation

131 Seiten · ISBN 3-89675-047-X

48 Sicherheitstechnik an Werkzeugmaschinen

106 Seiten · ISBN 3-89675-048-8

49 Rapid Prototyping · Methoden für die reaktionsfähige 

Produktentwicklung

150 Seiten · ISBN 3-89675-049-6

50 Rapid Manufacturing · Methoden für die reaktionsfähige Produktion

121 Seiten · ISBN 3-89675-050-X

51 Flexibles Kleben und Dichten · Produkt-& Prozeßgestaltung, 

Mischverbindungen, Qualitätskontrolle

137 Seiten · ISBN 3-89675-051-8

52 Rapid Manufacturing · Schnelle Herstellung von Klein- 

und Prototypenserien

124 Seiten · ISBN 3-89675-052-6

53 Mischverbindungen · Werkstoffauswahl, Verfahrensauswahl, 

Umsetzung

107 Seiten · ISBN 3-89675-054-2

54 Virtuelle Produktion · Integrierte Prozess- und Produktsimulation

133 Seiten · ISBN 3-89675-054-2

55 e-Business in der Produktion · Organisationskonzepte, IT-Lösungen, 

Praxisbeispiele

150 Seiten · ISBN 3-89675-055-0

56 Virtuelle Produktion – Ablaufsimulation als planungsbegleitendes 

Werkzeug

150 Seiten · ISBN 3-89675-056-9

57 Virtuelle Produktion – Datenintegration und Benutzerschnittstellen

150 Seiten · ISBN 3-89675-057-7

58 Rapid Manufacturing · Schnelle Herstellung qualitativ hochwertiger 

Bauteile oder Kleinserien

169 Seiten · ISBN 3-89675-058-7

59 Automatisierte Mikromontage · Werkzeuge und Fügetechnologien für 

die Mikrosystemtechnik

114 Seiten · ISBN 3-89675-059-3

60 Mechatronische Produktionssysteme · Genauigkeit gezielt 

entwickeln

131 Seiten · ISBN 3-89675-060-7

61 Nicht erschienen – wird nicht erscheinen

62 Rapid Technologien · Anspruch – Realität – Technologien

100 Seiten · ISBN 3-89675-062-3

63 Fabrikplanung 2002 · Visionen – Umsetzung – Werkzeuge

124 Seiten · ISBN 3-89675-063-1

64 Mischverbindungen · Einsatz und Innovationspotenzial

143 Seiten · ISBN 3-89675-064-X

65 Fabrikplanung 2003 – Basis für Wachstum · Erfahrungen Werkzeuge 

Visionen

136 Seiten · ISBN 3-89675-065-8

66 Mit Rapid Technologien zum Aufschwung · Neue Rapid Technologien 

und Verfahren, Neue Qualitäten, Neue Möglichkeiten, Neue Anwend-

ungsfelder

185 Seiten · ISBN 3-89675-066-6

67 Mechatronische Produktionssysteme · Die Virtuelle Werkzeug-

maschine: Mechatronisches Entwicklungsvorgehen, Integrierte Mod-

ellbildung, Applikationsfelder

148 Seiten · ISBN 3-89675-067-4

68 Virtuelle Produktion · Nutzenpotenziale im Lebenszyklus der Fabrik

139 Seiten · ISBN 3-89675-068-2

69 Kooperationsmanagement in der Produktion · Visionen und Methoden 

zur Kooperation – Geschäftsmodelle und Rechtsformen für die Koop-

eration – Kooperation entlang der Wertschöpfungskette

134 Seiten · ISBN 3-98675-069-0

70 Mechatronik · Strukturdynamik von Werkzeugmaschinen

161 Seiten · ISBN 3-89675-070-4

71 Klebtechnik · Zerstörungsfreie Qualitätssicherung beim flexibel au-

tomatisierten Kleben und Dichten

ISBN 3-89675-071-2 · vergriffen

72 Fabrikplanung 2004  Ergfolgsfaktor im Wettbewerb · Erfahrungen – 

Werkzeuge – Visionen

ISBN 3-89675-072-0 · vergriffen

73 Rapid Manufacturing Vom Prototyp zur Produktion · Erwartungen – 

Erfahrungen – Entwicklungen

179 Seiten · ISBN 3-89675-073-9
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