
DISTRIBUTING REAL-TIME CONTROL TASKS
AMONG MULTI AGENT ROBOT SYSTEMS

TIM C. LUETH
FZI Research Center, Haid-lInd-Nell-Str. 10-14, D-76131 Karlsrllhe,
Germany, email: 1.llIel!l@ieee.org

JOHAN HELLQVIST, THOMAS LAENGLE
IPR Institute for Real-Time Computer Systems amI Robolics, U. of
Karlsruhe, D-76128 Karlsm!le, German)', email: laengle@ira.uka.de

ABSTRACT

A task performed by an autonomous robot system can be described as a
ner\vork of event-based and time-based controlloops. 11' a single task must
be distribllled to several individual robot systems, it is necessary to sepa­
rate the network into independent but coupled subnets. In this paper, a
robot operating system, CAIC (Cooperative ArchiteclUre for Intelligent
Contro!), is described that supports the distribution und execution of con­
trollasks. i.e., contral networks l%n several rabots.

KEYWORDS: Intelligent Control, event-/time-based control, distributed
control, cooperalive ar~hitecturcs, robot operating systcm CAIC

TASK SPECIFICATION

A task for an individual robot or a group of robots can be described as one (or Cl set of)
condirion-event Petri ner (CEP) [1, 2, 3]. In most cases, there is not only one possible
CEP for a task but there are several CEPs that make different use of the available re­
sources. Evcn for apart of a CEP there are several alternative sub-CEPs. The condition
for executing a transition can be
• a specific time, whieh is used for time based control14],
• an internal stale of the robor, which us used together Wilh explicil environment models

and event based control [5],
• an external environment state, which us used together with implicit environment mod­

els and event based control [6], or
• a mixture of the conditions above.

The mechanism that is used to determine and broadcast the exccution condition can be
implemented ccntralized but also deeemralizcd near the exceuting components.

A CEP or a transition ean be generalcd in advanec or dynamieally generated (scleclcd.
adapled ete.) during task execution. Fig. la shows a CEP for time based control of Iwo
independent actualOrs. A CEP interpreter is reading and interpreting the CEP and is
waiting for external events. Then it gives a transition as command 10 an execution con­
troller (EC). The exccution controller itself may be an CEP interpreter or a cIosed controI

477

·..~ :
...:

I- '
~ f~' I

-I­
"(

478

Activation: time. event

!Module -- ...

Sensing

11 I
___,__ T, I
~ Module ... - - . - -I Modul ... jModule
~Observing' ~ Conlroling 1---._-_ Execulion

I(k) ~,Modeling x(k) IPlanning u(k) ,control
'====--.1

(.~(\~~'.J Information flow

'-:--1 - \c-
"- / 'e)'- -Sensors

a) Task d~~crip[ion by a condilion-~v~n1 Petri Ne!. b) A transirion is a l:onlrol nel

Information tlow (double lind and l:onlrol tlow (do[[~d Iinc) in conlrolloops

Control flow----.. ,,

Figurc 1.

COi'iTROL SYSTEM SPECIFICATION

system (Fig. 2a). Such a cOnlrol system generally consisls of modules for sensing (S).
observalionJmodeling (OlM). conrrollplanning (C/P) and execlItion control (EC) for an
actuator.

Figurc 2.

Thc oescription 01' the contral architeclurc must specify:
whclher a modules is activated by time. e"cnl or balh.
which events dClec:tcd hy whom will ac:tivate a module.
which olher modules must be activalcd berore algorithm execlItion.

• which olher modules mus! be activatcd arter algorithm exccutian.
\vhich buffers, mail boxcs. elC. are uscd for inler module communication.
wh ich blltTers are uscJ to change the (Jwn and olher modules' archileclures.

An cxccution controller such as in Fig. 1b. can be described by Ihe specificution of both
the control function 01' algorilhm and thc contral architecture. An exact specification al­
lows the implememalion 01' an execlltion controller by lIsing exisling control modules (S.
0/\1. ClP. EC). Instead of sending a command to a known. i.c .. previously spccilied und
impkmented. EC it is abo possible 10 inslailihe EC during run-time when it's required.

An EC \vith Cl fixet! contrei function has typically the structure shown in Fig. 2. The
control modules are linkcd by the informalion now and activated by thc contraf tlow.
Thc cxample shows a planning module thaI activates the observation module first, which
itself aClivates a sensor shot. generales a command for the following EC and activates
Ihen Ihe following EC.

..: J'
"! .'.

479

CAIC· COOPERATIVE ARCHITECTURE FOR INTELLIGENT CONTROL

Examples for a) hi~rarchical contral and b) h~ha\"ior-based concurreO! control .Figure 3.

Fig. :1 shows simple control architeclures für hierarchieal control and concurrent
behavior-bascd contro!.

As pointed out, a task description may include an explicit spccification of the control
system (modules plus architecture) that is desired für task execmion. If this is the case,
it's possiblc to implement a desired control system during run-time on a robot's com­
puter control system. The sizc of the overall operating control system depends on the
availabie memory, computational power, and limited number of concurrent processes.
This means, if there. is capacity left in a robot's computer eontrol system, a robot can take
over additional tasks as long as there are not other physical resource contlicls. This idea
has been published first in (7).

To dynamically install and change a robot control system. the CAIC (Cooperative
Architecturc for Intelligent Control) robot operating system has been devcloped in Karl­
sruhe. CAIC is an extension for existing real-time operating systems. It allows the flexi­
ble compilation of encapsulated control modules into a running control system [8, 9}.
Furthermore, control modules can propagate the need for minimal or maximal infonna­
lion flow frequencies to preceding control modules.

In CAIC, aJl control algorithms are encapsulated into a module frame that work simi­
larly to an actor [10]. A central round-robin scheduler switches fast between the individ­
ual control modules. Each module itself checks its activation conditions and suspends if
the time or event for activation has not reached YCI. This means. the modules perform a
cooperative scheduling with statistical jitters. The modules can detect consiant activation
delays, which correspond to overloading of the computer. Overload occurs. if several
complicatcd computations are performed concurrcntly. In this case. the task switching
frequency of the round-robin scheduler limits the minimal activation frequcncy.

The modules communicatc by reading and writing iota buffers. Each buffer can be
implemented as a size-one or as a multi-buffer, i.e., a queue. Modules and buffers have
identifying names. Task switching is delayed during buffer-write operations.

Each module is using a previously defined control-in-buffer and control-out-buffer.
The control-in-buffer of a module is used by other module 10 announce the request for
changing the module's activation frequency or condilion. The same buffer is also used [Q

.. .

.~ ,

i
,~ .

480

check in and check out the rcquest of a link to a module's output buffer. A module con­
tinuously reads and interprets its own control-in-buffer and reacts to the requests. If no
other module is checked in any more. the module terminates itself and removes its
buffers after a delay that corresponds to its installation time. The control-out-buffer of a
module is uscd to announce changes of its activation frequency or condition. Further­
more, it is used to announce detected activation delays, when they are bigger than a pre­
defined tolerance. Fig. 4a shows an example for a module frame .

Figure 4. a) Exampk for a module (actor) frame b) Example of a concurrent control network

'i
"

,~.

Fig. 4b (control fiow is not included) shows apart of a simple control network used for
the robots in the experiments. Nine modules operate in parallel to process the sensor
information and generate the required whcel speed for moving around and avoiding colli­
sions with other objects. Thc individual modules can have different cycle times and acti­
vare each other depending on the architecture specification. Independent on the contra)
tlow. the information f10w adds some constraints regarding the module synchronization
and information acccss:
I Since discrete information units are exchanged, the information generating module

will delay the information processing module.
2 If two or more information generating modules write into the same buffer, the problem

of information integration arises. even if a queue-type buffer is used.
3 If a module is reading and processing information of two or more buffer. the problem

of simultaneously reading and processing must be mastered.
-l Dynamic ch'lOges of the archilecture during run-lime. requirc Ihe capability to manage

Ihe problems. Therefor. Ihe specitication of the architecture must inc1ude an optional a
dcscription how to deal wilh occurring synchronization and access problems.
The CAIC rohot operaling shcll itself is continuously running as a module ..md inter­

prets thc robot's central cOlllrnl-in-buffer. It is rcsponsible for inslalling new modules on
cXlcrnal requcsl. furthermore. il distributes incoming messages 01' extcrnal control mod­
ules. \vhich are active on olher rubolS. to the appropriale modules of lhe local robol. In
Ihe future. the shcll will be also rcsponsible for moving operaling modules or control nets
to other robots' CAIC systems.

EXPERIMENTS

In the experimenls. CAIC has been used to dynamically inSlall. operale, and terminate
corHrol nelworks. FurthemlOre. the individual contro) modules use CAIC during run-time
10 synchronize lhemselves wilh other conlrol modules. to suspcnd. delay or accelerate
control subnets. to interrupt and install links bct\veen event-gcnerating and event-pro­
ccssing modules. eie.

481

Grasping and lransporting a "spacing piece" by control nelwork coupling

a) Grasping of a "spacer" and b) inserting lhe "spacer" inta a "side plate"

Figure 6.

Figure 5.

The new CAIC capability was uscd to implement a grasping and transportation task in
a closed kinemalic chain of two robots (Fig. 6). During execution, the robms exchange in
a dynamic master-slave configuration their speed, gripper angle, etc. The next step is to
locally measure the applied force in each robot by evaluating the counter of the wheel-

For coupling real-time control subnets running on several individual robots' CAIC
system. a loeal communication systcm is required. Such a communication system has
been developed and inrcgrated into the CAIC system [9] for thc Khepera robots. By
using the loeal communication system, it was possible to combine independent eontrol
systems. The main differenee in eomparison wirh other real-time operating system sueh
as VxWorks or LynxOS. is the eapability to couple comrol systems based on physical
relations.

The whole eOnlrol system of a robot is deseribed by a set of control modules and the
mechanisms that are used to link the modules. CAIC supports the mapping of the net­
work dcseriplion 10 an operating control system ami allows also dynamic changcs during
run-time.

During the experiments, for instanee, control loops such as obstacJe avoidanee were
changed from a continuous time-based mode to a triggcred evenr-based mode in which
control is aetivated only if sensor information is available.

By using CAIC, asscmbly operations for the Cranfield Assembly Benchmark have been
implemented for the small Khepera robols. The robots (11] are able to search for objects.
to disringuish objects, to move rellllively to objects, to grasp assembly parts (Fig. 5a),
and evcn to perform tusks like insert assembly paris (Fig. Sb) into a fixture. The exact
description of the capabilities has becn published in 18].

I.

7.

6.

speed's PID-controller. Thcn. not only master-slave configurations but also coupling of
independent control system will be possible.

482

CONCLUSION

ACKNOWLEDGMENT

A lask performed by an aUlonomous robor system can be described as a network of
event-based and time-based contral loops. The conlrol loops consisl of contral modules
(haI are linkcd by informal ion tlow between the modules and control tlow for [he activa­
[ion of [he modules. Different tasks may require the same control modules but a different
linkage between [he modules. The CAIC system supports the flexible linkage of robor
control modules. By using agIobaI or local communication system CAIC allows also [he
linkage of control modules running on different robor control processors. By using robor
operating systems such as CAIC. the development of robot control systems becomes
more flexible and allows a better description of the acrual contral architecture of a con­
trol system. Experiments show Ihat CAIC is a powerful tool for control system design.
Funher research will show which features of a robot operating system have to be added
[0 the current status.

REFERENCES

Hoennann. A.: A Pelr; Nel Bascd Conlrol Archilecturc ior a Multi·Rohol Syslem. ISIC IEEE In!.
Symp. on Inlclligenl Conlml. Alhany. USA. 1989.
Freedman. P.: Time. Pelr; nets. aod Robolics. IEEE Trans. on Rohmies and AUlomation. 7.4 (19911.
pp. 417-433.
GOllschlich. S.: C. Ramos. D. Lyons: Asscmbly and Task Planning - A Taxonomy. IEEE RohOlics
:Jnd AUlom<ll;on i\lagazine. I. :; (1994). pp. 4-12.
rVlusliner. D.J .. E.H. Durlee. K.G. Shin: CIRCA: A Coopcralive Intclligent Real Time Conlrol Archi­
Icclure. IEEE Trans. on Syslem Man and Cyhcrnclics. 23.6 (1993). pp. 1561-1574.
Iscrman. R.: Digilal Conlml Systems. Vol I.. Springer-Verl<Jg. 1989.
Sohh. T.M.: K. Valavanis. D. Gracanin. J. Owen: A Suhjecl-Indexed Bibliography 01' Discrelc Evenl
Dyn:Jmic Syslems. IEEE Robolics and AUlomalion Magazine. 1.2 (1994). pp. 14-20.
Kosecka.1.. R. Bajcsy: Discrcle Evenl Syslcms for AUlonomous Mobile Agcnls. Roholics :Jnd Au·
IOnomous Systems. 12 (3&4) (1994). pp. IB7-198.
Musliner. D.1.. E.H. Durfee. K.G. Shin: CIRCA: A Cooperalivc Inlelligent Real Time Conlrol Archi­
teelure. IEEE Trans. on Systcm Man and Cybcrnclics. 23.6 (!lJ93). pp. 1561-1574.
Luelh. T.: Th. Laengle. J. Heinzman: Dynamic Task Mapping for Real·Timc Conlroller of Dis·
Irihuled Coopcralive Rohot Syslems. IFAC WS Dislribuled Compuler Conlrol Syslems. Toulouse­
Blagnac. Fr;lOce. Seplcmbcr. 1995. pp. 37·42.
Luelh. T.C.; R. Grasman. Th. Laengle. J. Wang: Coopcration Among OiSlrihuled Conlrolled Robols
Using Local Inlcraclion Prolocols. ISRAM Inl'l. Symp. on RohOlics and Milnufacluring. Monlpcllier.
Francc. May. 1996.

10. Agha. G.: C. Hcwill: Concurrcnl Programming Using AClors. In OhjecI·Oricnled Concurrcnl Pro­
grilmming. MIT Press. 19R7.

11. K-Tea,": Khepera User Manual. Ver. 3.0. LAMI·EPA... Lausanne. Swiss. 11)l)4.

This research is being performed at FZI • Forschungszentrum Informatik. Division
TE&R • Robotics, and ar IPR • Institute for Real-Time Computer Systems and Robotics
<Prof. Dr.-Ing. U. Rembold, Prof. Dr.-Ing. R. Dillmann), Universiry of Karlsruhe. Thanks
to Ronald Grasman for designing the FZrs local infrared communication system.

3.

.~.

'>.

:-\..

	Text1: Lueth, T.; J. Hellqvist (1996): Distributing Real-Time Control Tasks Among Multi Agent Systems. ISIAC Int'l. Symp. on Intelligence and Automation Control, Montpellier, France, May, Robotic and Manufacturing Systems, TSI Press, 1996, pp. 477-482

