SPICY - Silicon and polyanionic chemistries and architectures of Li-ion cell for high energy battery

SPICY is a collaborative research project associating 5 industrials partners (3 large groups and 2 SME) with 8 academic and research centres to the multidisciplinary development of a new generation of Li-ion batteries meeting the expectations of electrical vehicle end-users, including performances, safety, cost, recyclability and lifetime. For this purpose, SPICY will consider the development of new chemistry materials, cell architectures and packaging with the support of understanding and modelling activities. SPICY will address the whole value chain until the implementation of manufacturing.

SPICY will focus on polyanionic phosphates for the cathode material. LiFePO4 is well known as a safer and more durable cathode material. Unfortunately, its energy density is low due to the electrochemical potential of Fe. One objective of SPICY will be to bind metals having a higher potential than Fe, allowing an increase of the material potential, and thus a higher energy. Regarding the anode material, SPICY will study two chemistries. Graphite is used in current Li-ion cells and remains one of the major anode materials for the next generation of Li-ion cells. Silicon is appropriate for high energy cell applications but has lower cyclability. Silicon will be investigated through new synthesis process methods providing nanoparticles and core-shell structures to improve particle stability. Active and passive components will be harmonized for a higher energy density i.e: polyanionic phosphate /graphite up to 200 Wh/kg, and polyanionic/Si up to 230 Wh/kg. In addition, three cells architectures and packaging will be investigated. The thermal behaviour of these cells will be studied in ageing tests in order to model Li-ion cells. Finally, the industrial environment will be considered and SPICY solution will be assessed so as to optimise cost and to integrate eco-design, thereby supporting the future development of a strong industrial base in this field.


The SPICY project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 653373.

The responsibility for the content of this publication lies with the author.

Duration 5/2015-5/2018
Funding European Commission - Research and Innovation programme Horizon 2020