Dingzhi Zhang

M.Sc. Medizintechnik

Mitarbeiter am MiMed seit: Oktober 2020

 

Raum: 1130

Tel. +49 89 289 15184

Email.: dingzhi.zhang@tum.de

Betreute Lehrveranstaltungen:

Vorlesung - Mathematische Tools

Seminar - Entwicklung modularer robotischer Systeme

Projekt:

CarrierBot: Realisierung einer mobilen Fahrplattform mit einem intuitiven Steuerungskonzept für die Büroumgebung

Forschungsthemen:

- Vision-based Navigation for Mobile Robotics

- Collision Avoidance for Mobile Robotics

- Real Time Locating Systems (RTLS)

 

Laufende Studienarbeiten:

BA: "Self-Iocalization of a Mobile Robot in an Office Environment using AprilTag Detection and Topological Map for Teach-and-Repeat Programming"

SA: "Development of a Human-Following Control for Precise Path Recording for Teach-and-Repeat Programming of a mobile Robot"

SA: "Wegspeicherung und Navigation einer robotischen Transportplattform mit Teach-and-Repeat Programmierung unter Verwendung von AprilTags"

 

Abgeschlossene Studienarbeiten:

MA: "External Weight Adaptive Balancing Control of a Two Wheeled Inverse Pendulum Robot"

MA: "Entwicklung und Implementierung eines visuellen Steuerungskonzepts für einen tragbaren Roboterarm mittels AprilTags"

SA: "Realisierung einer Hinderniserkennung und Kollisionsvermeidung für eine mobile Fahrplattform mittels Ultraschall-Abstandsensoren"

SA: "Development and implementation of a visual control concept for a mobile platform"

SA:"Automatic Design of 3D-Printed Springs using SG-Library for Force-Dependent Collision Detection of a Mobile Platform Bumper"

BA: "Entwicklung und Evaluierung eines robotischen Transportwagens mit automatischem Folgemodus basierend auf UWB-Lokalisierung"

BA: "Realization of Teach-and-repeat for a Mobile Robot using Vision-based Human-Following"

 

Veröffentlichungen:

Zhang, D.; Birner, L.; Pancheri F.; Rehekampff, C.; Lueth, T. C. (2024): A Hybrid Human Tracking System using UWB Sensors and Monocular Visual Data Fusion for Human Following Robots, 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024, accepted)

Zhang, D.; Birner, L.; Zinkernagel, V.; Rehekampff, C.; Burschka, D.; Lueth, T. C. (2023): Carrier Bot: A UWB-Based Human Following Mobile Platform for Intra-Office Transport with an Intuitive Teach-And-Repeat Programming. IEEE International Conference on Robotics and Biomimetics (ROBIO 2023), December 4-9, 2023, Koh Samui, Thailand. doi: 10.1109/ROBIO58561.2023.10354960  (IEEE ROBIO Robotica Best Paper Award Finalist)

Zhang, D.; Pancheri. F.; Rehekampff, C.; Sun, Y.; & Lueth, T. C.(2022), November. Automated Digitization of Three-Dimensional Structures Using AprilTag and Solid Geometry-Library in MATLAB. ASME. J. Comput. Inf. Sci. Eng. August 2023; 23(4): 044503 (Published Online: January 23, 2023). doi:10.1115/1.4056065

Zhang, D.; Sun, Y.;  Lueth,T.C. (2021): Design of a novel tendon-driven manipulator structure based on monolithic compliant rolling-contact joint for minimally invasive surgery. Int J CARS. PMID: 34235629 doi:10.1007/s11548-021-02442-w

Zhang, D.; Sun, Y.; Lueth, T.C. (2020): Design of a novel dexterous continuum manipulator for medical application using compliant rolling-contact joint, CARS: Int’l Congress on Computer Assisted Radiology and Surgery, Munich, Germany, June 23-27, 2020. DOI:10.1007/s11548-020-02171-6

Sun, Y.; Zhang, D.; Liu, Y. and Lueth, T. C. (2020) "FEM-Based Mechanics Modeling of Bio-Inspired Compliant Mechanisms for Medical Applications," in IEEE Transactions on Medical Robotics and Bionics, vol. 2, no. 3, pp. 364-373, Aug. 2020, doi: 10.1109/TMRB.2020.3011291

Sun, Y.; Zhang, D. and Lueth, T. C. (2020) "Bionic Design of a Disposable Compliant Surgical Forceps With Optimized Clamping Performance," 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 2020, pp. 4704-4707. PMID: 33019042, DOI: 10.1109/EMBC44109.2020.9176027

Yilun Sun, Lingji Xu, Dingzhi Zhang and Tim C. Lueth. "Automatic synthesis of compliant forceps for robot-assisted minimally invasive surgery." at - Automatisierungstechnik 68 (11), 922-932, 2020. DOI: https://doi.org/10.1515/auto-2020-0084